Fiber Laser Cutting Technology: Pilot Case Study in Mild Steel Cutting

Authors

DOI:

https://doi.org/10.31181/smeor1120241

Keywords:

Fiber laser cutting, kerf width, surface roughness, mild steel, OFAT experiment

Abstract

Upon different traditional and unconventional contour cutting technologies, fiber laser cutting technology is increasingly emerging as the most adequate choice for modern industrial production. In this paper the basics, specific characteristics and associated benefits and opportunities, as well as latest research and development directions in fiber laser cutting technology were discussed. In addition, the study presents results obtained by realization of two pilot experiments, based on the use of one factor at a time (OFAT) experimental strategy, in fiber laser cutting of mild steel. The first OFAT experiment considered the analysis and modelling of the effect of focus position on the kerf width and surface roughness, while the second OFAT experiment investigated the effect of the cutting speed. Based on the analysis of experimental results more adequate parameter settings than initial were identified which was one of the underlying motives and goals of the present study.

Downloads

Download data is not yet available.

References

Mahrle, A., Bartels, F., & Beyer, E. (2008, October). Theoretical aspects of the process efficiency in laser beam cutting with fiber lasers. In International Congress on Applications of Lasers & Electro-Optics. AIP Publishing. https://doi.org/10.2351/1.5061285.

Turkkan, Y. A., Aslan, M., Tarkan, A., Aslan, Ö., Yuce, C., & Yavuz, N. (2023). Multi-objective optimization of fiber laser cutting of stainless-steel plates using Taguchi-based grey relational analysis. Metals, 13(1), 132. https://doi.org/10.3390/met13010132.

Girdu, C. C., & Gheorghe, C. (2022). Simulation of melting efficiency in laser cutting of Hardox 400 steel. Materials, 15(20), 7192. https://doi.org/10.3390/ma15207192.

Lai, S., Jia, Y., Han, B., Wang, J., Liu, Z., Ni, X., ... & Lu, J. (2017, June). Lumped parameter experiments for single mode fiber laser cutting of thin stainless steel plate. In Journal of Physics: Conference Series (Vol. 844, No. 1, p. 012062). IOP Publishing. https://doi.org/10.1088/1742-6596/844/1/012062.

Bohdal, Ł., & Schmidtke, D. (2022). Effect of fiber and CO2 lasers parameters on the cut surface quality of RVS 1.4301 stainless steel. Journal of Mechanical Engineering and Sciences, 16(2), 8862-8872. https://doi.org/10.15282/jmes.16.2.2022.05.0701

Rizal, M., Usman, H., & Adel, R. Y. (2022). Fiber laser cutting of AISI-304 stainless steel: an experimental study of the influence of process parameters on kerf width and cutting edge quality. Jurnal Teknik Mesin, 10(2), 52-56.

Nguyen, D. T., Ho, J. R., Tung, P. C., & Lin, C. K. (2021). Prediction of kerf width in laser cutting of thin non-oriented electrical steel sheets using convolutional neural network. Mathematics, 9(18), 2261. https://doi.org/10.3390/math9182261.

Sobih, M., & Hussien, W. M. (2012, May). Scoring model for fiber laser cutting of mild steel sheets. In The International Conference on Applied Mechanics and Mechanical Engineering (Vol. 15, No. 15th International Conference on Applied Mechanics and Mechanical Engineering., pp. 1-14). Military Technical College. https://doi.org/10.21608/amme.2012.37080.

Lopez, A. B., Assuncao, E., Quintino, L., Blackburn, J., & Khan, A. (2017). High-power fiber laser cutting parameter optimization for nuclear decommissioning. Nuclear Engineering and Technology, 49(4), 865-872. https://doi.org/10.1016/j.net.2017.02.004.

Huang, S., Fu, Z., Liu, C., & Li, J. (2023). Multi-objective optimization of fiber laser cutting quality characteristics of glass fiber reinforced plastic (GFRP) materials. Optics & Laser Technology, 167, 109720. https://doi.org/10.1016/j.optlastec.2023.109720.

Oh, S., Lee, I., Park, Y. B., & Ki, H. (2019). Investigation of cut quality in fiber laser cutting of CFRP. Optics & Laser Technology, 113, 129-140. https://doi.org/10.1016/j.optlastec.2018.12.018.

Amaral, I., Silva, F. J. G., Pinto, G. F. L., Campilho, R. D. S. G., & Gouveia, R. M. (2019). Improving the cut surface quality by optimizing parameters in the fibre laser cutting process. Procedia Manufacturing, 38, 1111-1120. https://doi.org/10.1016/j.promfg.2020.01.199.

Scintilla, L. D., & Tricarico, L. (2013). Fusion cutting of aluminum, magnesium, and titanium alloys using high-power fiber laser. Optical Engineering, 52(7), 076115-076115. https://doi.org/10.1117/1.OE.52.7.076115.

Pasic, M., Begic-Hajdarevic, D., & Bijelonja, I. (2018, January). Laser cut surface roughness modelling using regression analysis. In Proceedings of the 29th DAAAM International Symposium, ISSN (pp. 1726-9679). https://doi.org/10.2507/29th.daaam.proceedings.121.

Vora, J., Chaudhari, R., Patel, C., Pimenov, D. Y., Patel, V. K., Giasin, K., & Sharma, S. (2021). Experimental investigations and Pareto optimization of fiber laser cutting process of Ti6Al4V. Metals, 11(9), 1461. https://doi.org/10.3390/met11091461.

Chen, C., Gao, M., Jiang, M., & Zeng, X. (2016). Surface morphological features of fiber laser cutting of AA2219 aluminum alloy. The International Journal of Advanced Manufacturing Technology, 86, 1219-1226. https://doi.org/10.1007/s00170-015-8271-z.

Orishich, A. M., Malikov, A. G., Shulyatyev, V. B., & Golyshev, A. A. (2014). Experimental comparison of laser cutting of steel with fiber and CO2 lasers on the basis of minimal roughness. Physics Procedia, 56, 875-884. https://doi.org/10.1016/j.phpro.2014.08.106.

Pocorni, J., Petring, D., Powell, J., Deichsel, E., & Kaplan, A. F. (2016). The effect of laser type and power on the efficiency of industrial cutting of mild and stainless steels. Journal of Manufacturing Science and Engineering, 138(3), 031012. https://doi.org/10.1115/1.4031190.

Pradana, Y. R. A., Afrianto, R., Rahman, C. H. A., & Andoko, A. (2023). The effect of cutting speed of nitrogen laser cutting on the surface texture of SUS 304 plate. Journal of Mechanical Engineering Science and Technology (JMEST), 7(1), 66-75. https://doi.org/10.17977/um016v7i12023p066.

Li, M. (2021). Evaluation of the effect of process parameters on the cut quality in fiber laser cutting of duplex stainless steel using response surface method (RSM). Infrared Physics & Technology, 118, 103896. https://doi.org/10.1016/j.infrared.2021.103896.

Sołtysiak, R., Wasilewski, P., Sołtysiak, A., Troszyński, A., & Maćkowiak, P. (2019). The analysis of Fiber and CO2 laser cutting accuracy. In MATEC Web of Conferences (Vol. 290, p. 03016). EDP Sciences. https://doi.org/10.1051/matecconf/201929003016.

Sołtysiak, R., Sołtysiak, A., & Wasilewski, P. (2019). Development of laser cutting technology with high quality of the cut surface. Journal of Machine Construction and Maintenance-Problemy Eksploatacji. https://doi.org/10.12783/dtcse/fe2019/30680.

Ullah, S., Li, X., Guo, G., Rodríguez, A. R., Li, D., Du, J., ... & Liu, X. (2022). Influence of the fiber laser cutting parameters on the mechanical properties and cut− edge microfeatures of a AA2B06− T4 aluminum alloy. Optics & Laser Technology, 156, 108395. https://doi.org/10.1016/j.optlastec.2022.108395.

Li, M., Chen, L., & Yang, X. (2021). A feasibility study on high-power fiber laser cutting of thick CFRP laminates using single-pass strategy. Optics & Laser Technology, 138, 106889. https://doi.org/10.1016/j.optlastec.2020.106889.

Al-Mashikhi, S. O., Powell, J., Kaplan, A., & Voisey, K. T. (2011). Heat affected zones and oxidation marks in fiber laser–oxygen cutting of mild steel. Journal of laser applications, 23(4). https://doi.org/10.2351/1.3614404.

Siim Sild, 2022, Fibre Lasers – Working Principles, Applications & More. Available from: https://fractory.com/fibre-lasers-explained/ [Accessed 1 August 2023].

Jerome Landry, 2020, Fiber Lasers: Everything You Need to Know. Available from: https://www.laserax.com/blog/fiber-laser [Accessed 5 August 2023].

Kratky, A., Schuöcker, D., & Liedl, G. (2009, April). Processing with kW fibre lasers: advantages and limits. In XVII International Symposium on Gas Flow, Chemical Lasers, and High-Power Lasers (Vol. 7131, pp. 493-504). SPIE. https://doi.org/10.1117/12.816655.

J. Hecht, 2012: Fiber lasers: The state of the art. Available from: https://www.laserfocusworld.com/test-measurement/spectroscopy/article/16549567/fiber-lasers-fiber-lasers-the-state-of-the-art [Accessed 7 August 2023].

Wandera, C. (2016). Fiber lasers in material processing. Fiber Laser. https://doi.org/10.5772/62014.

What is Beam Shaping Technology in Laser-Cutting? Available from: https://www.mazakoptonics.com/news-events/blog/what-is-beam-shaping-technology-in-laser-cutting/ [Accessed 7 August 2023].

Beam shaping helps fiber lasers cut thin and thick metal parts. Available from: https://www.thefabricator.com/thefabricator/article/lasercutting/beam-shaping-helps-fiber-lasers-cut-thin-and-thick-metal-parts [Accessed 7 August 2023].

High-Power Fiber Laser Cutting Advancements. Available from: https://blog.bystronicusa.com/high-power-fiber-laser-cutting-advancements/ [Accessed 7 August 2023].

Golishev, A. A., Malikov, A. G., Orishich, A. M., & Shulyatyev, V. B. (2014, November). Experimental comparison of the cutting speed and quality for mild and stainless steel sheets with fiber and CO2 lasers. In High-Power Lasers and Applications VII (Vol. 9266, pp. 224-229). SPIE. https://doi.org/10.1117/12.2070316.

Powell, J., Al-Mashikhi, S. O., Kaplan, A. F. H., & Voisey, K. T. (2011). Fibre laser cutting of thin section mild steel: An explanation of the ‘striation free’ effect. Optics and Lasers in Engineering, 49(8), 1069-1075. https://doi.org/10.1016/j.optlaseng.2011.03.011.

Wandera, C., & Kujanpaa, V. (2010). Characterization of the melt removal rate in laser cutting of thick-section stainless steel. Journal of Laser Applications, 22(2), 62-70. https://doi.org/10.2351/1.3455824.

Published

2024-04-18

How to Cite

Madić, M. ., Jovanović, D. ., & Janković, P. . (2024). Fiber Laser Cutting Technology: Pilot Case Study in Mild Steel Cutting. Spectrum of Mechanical Engineering and Operational Research, 1(1), 1-9. https://doi.org/10.31181/smeor1120241