Dynamic Effect of Ply Angle and Fiber Orientation on Composite Plates

Authors

DOI:

https://doi.org/10.31181/smeor11202410

Keywords:

Carbon Fiber, Vibration, Natural Frequency, Finite Element Method (FEM), Composite Plates

Abstract

Composite materials have revolutionized industries such as aerospace and automotive with their impressive strength-to-weight ratios and customizable properties. Ply angle and fiber orientation are critical factors that significantly impact the dynamic behavior of composite structures, influencing stiffness, strength, and vibrational characteristics. This research delves into the dynamic characteristics of composite plates, explicitly examining how ply angle and fiber orientation affect vibrational behavior. Through finite element analysis (FEA), composite plates with varying ply angles and fiber orientations were modeled to understand their influence on natural frequencies, mode shapes, and dynamic responses under various loading conditions. The study reveals that cross-ply [0/0/0/0] exhibits the highest stiffness and superior stress handling, while the cross-ply balanced laminate [90/0/0/90] demonstrates better vibrational characteristics. The findings highlight the intricate relationships between design parameters and structural vibrational behavior, offering opportunities for optimizing composite structures. Additionally, harmonic analysis showed that a cut-out increases the natural frequency. The results underscore the importance of optimizing composite plate configurations to enhance vibrational characteristics and align natural frequencies with operational requirements, thereby mitigating resonance-related issues. 

Downloads

Download data is not yet available.

References

A. Wazeer, A. Das, C. Abeykoon, A. Sinha, and A. Karmakar, “Composites for electric vehicles and automotive sector: A review,” Green Energy Intell. Transp., vol. 2, no. 1, 2023, doi: 10.1016/j.geits.2022.100043.

Y. Li and Q. Li, “Introduction,” in Engineering Materials, 2022, pp. 1–5. doi: 10.1007/978-981-19-5162-6_1.

S. W. Burande and D. V Bhope, “Review on material selection, tailoring of material properties and ageing of composites with special reference to applicability in automotive suspension,” in Materials Today: Proceedings, 2021, pp. 520–527. doi: 10.1016/j.matpr.2020.10.741.

S. B. K. Reddy, G. V Jagadeesh, and T. S. Krishna, “Effect of Fiber Orientation and Ply Thickness on Mechanical Behavior of Laminated Composites,” in Lecture Notes in Mechanical Engineering, 2023, pp. 259–265. doi: 10.1007/978-981-19-3895-5_20.

K. Sophia, M. Franz, O. Joachim, and H. Roland Markus, “COMPARING LOCAL FIBER ANGLES FROM DRAPING EXPERIMENTS TO SIMULATIONS,” in ECCM 2022 - Proceedings of the 20th European Conference on Composite Materials: Composites Meet Sustainability, 2022, pp. 710–717. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85149168358&partnerID=40&md5=d8fd75227ea19000b0895a3b8f48b85a

A. D. Anto, S. Mia, and M. A. Hasib, “The influence of number and orientation of ply on tensile properties of hybrid composites,” JPhys Mater., vol. 2, no. 2, 2019, doi: 10.1088/2515-7639/aaff7a.

A. Saood, A. H. Khan, and A. A. Khan, “Comparative Analysis of Non-linear Periodic Response of Cross-ply and Angle-ply Laminated Composite Plates,” in Journal of Physics: Conference Series, 2019. doi: 10.1088/1742-6596/1240/1/012156.

M. Smith, “New developments in carbon fiber,” Reinf. Plast., vol. 62, no. 5, pp. 266–269, Oct. 2018, doi: 10.1016/j.repl.2017.07.004.

B. A. Newcomb, “Processing, structure, and properties of carbon fibers,” Compos. Part A Appl. Sci. Manuf., vol. 91, pp. 262–282, 2016, doi: 10.1016/j.compositesa.2016.10.018.

J. Pusch and B. Wohlmann, “Carbon Fibers,” in Inorganic and Composite Fibers: Production, Properties, and Applications, 2018, pp. 31–51. doi: 10.1016/B978-0-08-102228-3.00002-5.

N. Vaneeswari and J. C. Sakthivel, “High performance carbon fiber composite and its applications,” Man-Made Text. India, vol. 51, no. 12, 2023, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85181487307&partnerID=40&md5=f4c901d2ec1e22100efa1ceee10e366b

C. Helfen and S. Diebels, “A numerical homogenisation method for sandwich plates based on a plate theory with thickness change,” ZAMM Zeitschrift fur Angew. Math. und Mech., vol. 93, no. 2–3, pp. 113–125, 2013, doi: 10.1002/zamm.201100173.

T. Wenxiang, L. Pengyu, S. Gang, H. Kun, H. Jipeng, and W. Cheng, “Refined plate elements for the analysis of composite plate using Carrera unified formulation,” Acta Mech., vol. 234, no. 9, pp. 3801–3820, 2023, doi: 10.1007/s00707-023-03594-3.

Q. Guo and G. Shi, “An accurate and efficient 4-noded quadrilateral plate element for free vibration analysis of laminated composite plates using a refined third-order shear deformation plate theory,” Compos. Struct., vol. 324, 2023, doi: 10.1016/j.compstruct.2023.117490.

S. L. Han and O. A. Bauchau, “Three-dimensional nonlinear shell theory for flexible multibody dynamics,” in Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics 2015, Multibody Dynamics 2015, 2015, pp. 443–467. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84979639688&partnerID=40&md5=1db6b56b48f900458c23b94a9e6c945f

S. Han and O. A. Bauchau, “Three-dimensional plate theory for flexible multibody dynamics,” in Proceedings of the ASME Design Engineering Technical Conference, 2015. doi: 10.1115/DETC2015-47249.

W. Xiang and Y. Xing, “A new first-order shear deformation theory for free vibrations of rectangular plate,” Int. J. Appl. Mech., vol. 7, no. 1, 2015, doi: 10.1142/S1758825115400086.

M. Park and D.-H. Choi, “A two-variable first-order shear deformation theory considering in-plane rotation for bending, buckling and free vibration analyses of isotropic plates,” Appl. Math. Model., vol. 61, pp. 49–71, 2018, doi: 10.1016/j.apm.2018.03.036.

V. Bojović and M. Rakočević, “ANALYTICAL AND NUMERICAL SOLUTION FOR FREE VIBRATIONS OF LAMINATED COMPOSITE PLATES,” J. Appl. Eng. Sci., vol. 22, no. 2, pp. 245–252, 2024, doi: 10.5937/jaes0-50407.

T. Özben and H. Şen, “Damage Behavior of Hybrid Composite Plates Exposed to Impacts at Different Energy Levels,” Mech. Compos. Mater., vol. 56, no. 3, pp. 361–366, 2020, doi: 10.1007/s11029-020-09887-1.

F. E. C. Marques, A. F. S. da Mota, and M. A. R. Loja, “Variable stiffness composites: Optimal design studies,” J. Compos. Sci., vol. 4, no. 2, 2020, doi: 10.3390/jcs4020080.

T. A. Sebaey, E. V González, C. S. Lopes, N. Blanco, and J. Costa, “Damage resistance and damage tolerance of dispersed CFRP laminates: The bending stiffness effect,” Compos. Struct., vol. 106, pp. 30–32, 2013, doi: 10.1016/j.compstruct.2013.05.046.

V. Balasubramani, S. R. Boopathy, B. Stalin, and V. Kavimani, “An experimental investigation on impact dynamics response of woven roved glass fiber reinforced polyester laminated composites,” Polym. Compos., vol. 43, no. 10, pp. 7266–7277, 2022, doi: 10.1002/pc.26791.

C. J. Cameron, J. Larsson, M. S. Loukil, T. Murtagh, and P. Wennhage, “Bearing strength performance of mixed thin/thick-ply, quasi-isotropic composite laminates,” Compos. Struct., vol. 261, p. 113312, Apr. 2021, doi: 10.1016/j.compstruct.2020.113312.

P. K. Karsh, T. Mukhopadhyay, and S. Dey, “Spatial vulnerability analysis for the first ply failure strength of composite laminates including effect of delamination,” Compos. Struct., vol. 184, pp. 554–567, Jan. 2018, doi: 10.1016/j.compstruct.2017.09.078.

S. A. Setyabudi, M. A. Choiron, and A. Purnowidodo, “Effect of angle orientation lay-up on uniaxial tensile test specimen of Fiber carbon composite manufactured by using resin transfer moulding with vacuum bagging,” IOP Conf. Ser. Mater. Sci. Eng., vol. 494, no. 1, p. 012020, Mar. 2019, doi: 10.1088/1757-899X/494/1/012020.

H. Wu, Z. Zhang, S. Li, L. Tong, and J. Lu, “Tensile behaviour of THIN-PLY composites,” in ICCM International Conferences on Composite Materials, 2019.

R. C. Bullock, T. Laux, O. T. Thomsen, and J. M. Dulieu-Barton, “PLY ORIENTATION EFFECTS IN MULTIDIRECTIONAL CARBON/EPOXY OPEN-HOLE SPECIMENS SUBJECTED TO SHEAR LOADING,” in ECCM 2022 - Proceedings of the 20th European Conference on Composite Materials: Composites Meet Sustainability, 2022, pp. 122–127. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85149172176&partnerID=40&md5=fc7eaa376697b683f6964f0c4d75b8c5

A. M. Zenkour, “Simplified theory for hygrothermal response of angle-ply composite plates,” AIAA J., vol. 52, no. 7, pp. 1466–1473, 2014, doi: 10.2514/1.J052631.

K. Draiche, A. Tounsi, and S. R. Mahmoud, “A refined theory with stretching effect for the flexure analysis of laminated composite plates,” Geomech. Eng., vol. 11, no. 5, pp. 671–690, 2016, doi: 10.12989/gae.2016.11.5.671.

Q. J. Yang and B. Hayman, “Simplified ultimate strength analysis of compressed composite plates with linear material degradation,” Compos. Part B Eng., vol. 69, pp. 13–21, 2015, doi: 10.1016/j.compositesb.2014.09.016.

Q. J. Yang and B. Hayman, “Ultimate strength predictions of imperfect composite plates,” in ICCM International Conferences on Composite Materials, 2015. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053135836&partnerID=40&md5=8915dd219ac72b3fd0f028920282eb0a

Q. J. Yang and B. Hayman, “Prediction of post-buckling and ultimate compressive strength of composite plates by semi-analytical methods,” Eng. Struct., vol. 84, pp. 42–53, 2015, doi: 10.1016/j.engstruct.2014.11.013.

S. Javed, “A Numerical Solution of Symmetric Angle Ply Plates Using Higher-Order Shear Deformation Theory,” Symmetry (Basel)., vol. 15, no. 3, 2023, doi: 10.3390/sym15030767.

J. Fazilati, “Stability Analysis of Variable Stiffness Composite Laminated Plates with Delamination Using Spline-FSM,” Lat. Am. J. Solids Struct., vol. 14, no. 3, pp. 528–543, Mar. 2017, doi: 10.1590/1679-78253562.

C. Zhu and J. Yang, “Vibration Analysis of Harmonically Excited Antisymmetric Cross-Ply and Angle-Ply Laminated Composite Plates,” in Vibration Engineering for a Sustainable Future: Experiments, Materials and Signal Processing, Vol. 2, vol. 2, 2021, pp. 129–135. doi: 10.1007/978-3-030-48153-7_17.

K. Senthilkumar et al., “Static and dynamic properties of sisal fiber polyester composites - Effect of interlaminar fiber orientation,” BioResources, vol. 12, no. 4, pp. 7819–7833, 2017, doi: 10.15376/biores.12.4.7819-7833.

X. Niu, W. Pan, and Y. Li, “MCT failure analysis of variable stiffness composite plate with a central hole,” Arch. Appl. Mech., vol. 88, no. 12, pp. 2283–2292, 2018, doi: 10.1007/s00419-018-1454-y.

C. Cakiroglu and G. Bekdaş, “Parametric Study of Dispersed Laminated Composite Plates,” in Materials Horizons: From Nature to Nanomaterials, 2021, pp. 375–385. doi: 10.1007/978-981-33-4550-8_15.

V. Infante, J. F. A. Madeira, R. B. Ruben, F. Moleiro, and S. T. de Freitas, “Characterization and optimization of hybrid carbon–glass epoxy composites under combined loading,” J. Compos. Mater., vol. 53, no. 18, pp. 2593–2605, 2019, doi: 10.1177/0021998319834673.

Y. Li, W. Ge, B. Liu, Z. Wang, S. Jin, and D. Dong, “Collaborative optimization for variable stiffness composite laminates using a fiber angle description method based on Archimedean spiral function,” Compos. Struct., vol. 329, 2024, doi: 10.1016/j.compstruct.2023.117478.

K. Falkowicz, H. Debski, and P. Wysmulski, “Effect of extension-twisting and extension-bending coupling on a compressed plate with a cut-out,” Compos. Struct., vol. 238, 2020, doi: 10.1016/j.compstruct.2020.111941.

G. Abu-Farsakh, Y. Hunaiti, and A. A. Bustami, “Effect of nonlinear material behavior of laminated composite plates with central rectangular hole subjected to out -of- plane loading,” in MATEC Web of Conferences, 2017. doi: 10.1051/matecconf/201712001001.

U. Beyazgül and D. Balkan, “Investigation of buckling response of variable angle fiber composite plates using differential evolution,” Int. J. Interact. Des. Manuf., vol. 17, no. 4, pp. 1579–1587, 2023, doi: 10.1007/s12008-022-01195-3.

W. H. Mohammed, S. Shambina, and H. K. Ammash, “Effect of Fibers Orientation on the Nonlinear Dynamic Performance of Laminated Composite Plate under Different Loading In-plane,” Civ. Eng. J., vol. 8, no. 12, pp. 2706–2720, 2022, doi: 10.28991/CEJ-2022-08-12-03.

A. Tati, S. Bouadjadja, and Y. Bada, “Free Vibration of Thermally Stressed Angle-Ply Laminated Composite Using First-Order Shear Deformation Theory Model with Assumed Natural Shear Strain,” J. Inst. Eng. Ser. C, vol. 100, no. 6, pp. 937–947, 2019, doi: 10.1007/s40032-018-0484-0.

H. Akhavan, P. Ribeiro, and M. F. S. F. De Moura, “Composite laminates with linearly varying fiber angles under static and dynamic loads,” in Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 2013. doi: 10.2514/6.2013-1565.

M. M. Shokrieh and S. M. K. Shahri, “Modeling residual stresses in composite materials,” in Residual Stresses in Composite Materials, Elsevier, 2021, pp. 193–213.

R. M. Jones, Mechanics of composite materials. CRC press, 2018.

J. R. Vinson, Plate and panel structures of isotropic, composite and piezoelectric materials, including sandwich construction, vol. 120. Springer Science & Business Media, 2005.

P. Dey, S. Haldar, D. Sengupta, and A. H. Sheikh, “An efficient plate element for the vibration of composite plates,” Appl. Math. Model., vol. 40, no. 9–10, pp. 5589–5604, 2016.

Published

2024-07-30

How to Cite

Memarzadeh, A. ., Onyibo, E. C. ., Asmael, M. ., & Safaei, B. . (2024). Dynamic Effect of Ply Angle and Fiber Orientation on Composite Plates. Spectrum of Mechanical Engineering and Operational Research, 1(1), 90-110. https://doi.org/10.31181/smeor11202410