Use of the Simple Multicriteria Decision-Making (MCDM) Method for Optimization of the High-Alloy Steel Cutting Processby the Abrasive Water Jet
DOI:
https://doi.org/10.31181/smeor11202411Keywords:
Abrasive Water Jet, AWJ, Cutting Depth, Roughness, Efficiency, Cutting, OptimizationAbstract
In the case of advanced manufacturing technologies, which include Abrasive Water Jet Machining, optimization of control parameters is necessary to achieve appropriate efficiency and quality. One of the optimization methods used in the presented research is SAW, from the Multi-Criteria Decision Making (MCDM) group. In multi-criteria decision-making (MCDM) situations, the criterion weights are crucial components that have a big impact on the outcomes. A novel technique called MEREC (MEthod based on the Removal Effects of Criteria) was presented to find the objective weights of the criteria. The research covered cutting high-alloy steel using AWJ, under the Design of Experiment (DoE) within the L9 orthogonal table. Abrasive flow rate, pressure, and feed were selected as control parameters. The cutting depth (beneficial) and the roughness of the cut surface Sa (non-beneficial) were taken as the output parameters. The result of the research is the determination of the impact of individual control parameters and the determination of a set of control parameters from the point of view of efficiency and quality.
Downloads
References
Hashish, M. (2024). Abrasive Waterjet Machining. Materials, 17(13), Article 13. https://doi.org/10.3390/ma17133273
Perec, A., Radomska-Zalas, A., Fajdek-Bieda, A., & Pude, F. (2023). Process Optimization by Applying the Response Surface Methodology (RSM) to the Abrasive Suspension Water Jet Cutting of Phenolic Composites. Facta Universitatis, Series: Mechanical Engineering, 21(4), Article 0. https://doi.org/10.22190/FUME211123010P
Perec, A., Radomska-Zalas, A., Fajdek-Bieda, A., & Kawecka, E. (2022). Efficiency of Tool Steel Cutting by Water Jet with Recycled Abrasive Materials. Materials, 15(11), 3978. https://doi.org/10.3390/ma15113978
Radomska-Zalas, A. (2023). Experimental Research on the Use of a Selected Multi-Criteria Method for the Cutting of Titanium Alloy with an Abrasive Water Jet. Materials, 16(15), 5405. https://doi.org/10.3390/ma16155405
Szada-Borzyszkowska, M., Kacalak, W., Banaszek, K., Pude, F., Perec, A., Wegener, K., & Królczyk, G. (2024). Assessment of the effectiveness of high-pressure water jet machining generated using self-excited pulsating heads. The International Journal of Advanced Manufacturing Technology. https://doi.org/10.1007/s00170-024-14040-6
Bhoi, N. K., Singh, H., Pratap, S., & Jain, P. K. (2022). Chemical reaction optimization algorithm for machining parameter of abrasive water jet cutting. OPSEARCH, 59(1), 350–363. https://doi.org/10.1007/s12597-021-00547-z
Perec, A., & Musial, W. (2021). Multiple Criteria Optimization of Abrasive Water Jet Cutting Using Entropy-VIKOR Approach. In S. Hloch, D. Klichová, F. Pude, G. M. Krolczyk, & S. Chattopadhyaya (Eds.), Advances in Manufacturing Engineering and Materials II (pp. 50–62). Springer International Publishing. https://doi.org/10.1007/978-3-030-71956-2_5
Madić, M., Jovanović, D., & Janković, P. (2024). Fiber Laser Cutting Technology: Pilot Case Study in Mild Steel Cutting. Spectrum of Mechanical Engineering and Operational Research, 1(1), Article 1. https://doi.org/10.31181/smeor1120241
Perec, A., Radomska-Zalas, A., & Fajdek-Bieda, A. (2022). Modeling of High Pressure Abrasive Water Jet Cutting of Marble. Facta Universitatis, Series: Mechanical Engineering, 20(1), 145–156. https://doi.org/10.22190/ FUME210203037P
Kawecka, E. (2024). The use of metaheuristic optimization algorithm in abrasive water jet machining of white marble. AIP Conference Proceedings, XIV International Conference Electromachining 2023, 020015. https://doi.org/10.1063/5.0203448
Sutowska, M., Kapłonek, W., Pimenov, D. Y., Gupta, M. K., Mia, M., & Sharma, S. (2020). Influence of Variable Radius of Cutting Head Trajectory on Quality of Cutting Kerf in the Abrasive Water Jet Process for Soda–Lime Glass. Materials, 13(19), 4277. https://doi.org/10.3390/ma13194277
Radomska-Zalas, A., Perec, A., & Fajdek-Bieda, A. (2019). IT support for optimisation of abrasive water cutting process using the TOPSIS method. IOP Conference Series: Materials Science and Engineering, 710, 012008. https://doi.org/10.1088/1757-899X/710/1/012008
Perec, A., Musial, W., Prazmo, J., Sobczak, R., Radomska-Zalas, A., Fajdek-Bieda, A., Nagnajewicz, S., & Pude, F. (2021). Multi-criteria Optimization of the Abrasive Waterjet Cutting Process for the High-Strength and Wear-Resistant Steel Hardox®500. In D. Klichová, L. Sitek, S. Hloch, & J. Valentinčič (Eds.), Advances in Water Jetting (pp. 145–154). Springer International Publishing. https://doi.org/10.1007/978-3-030-53491-2_16
Hlaváček, P., Sitek, L., Klichová, D., & Bodnárová, L. (2019). Effects of Abrasives During Accelerated Simulation of Mechanical Corrosion of Cement Composites Using Abrasive Water Flow. Acta Polytechnica CTU Proceedings, 22, 31–37. https://doi.org/10.14311/APP.2019.22.0031
Srivastava, A. K., Nag, A., Dixit, A. R., Tiwari, S., & Srivastava, V. S. (2019). Parametric Study During Abrasive Water Jet Turning of Hybrid Metal Matrix Composite. In S. Hloch, D. Klichová, G. M. Krolczyk, S. Chattopadhyaya, & L. Ruppenthalová (Eds.), Advances in Manufacturing Engineering and Materials (pp. 72–84). Springer International Publishing. https://doi.org/10.1007/978-3-319-99353-9_9
Szatkiewicz, T., Perec, A., Radomska-Zalas, A., Banaszek, K., & Balasz, B. (2023). Preliminary Studies into Cutting of a Novel Two Component 3D-Printed Stainless Steel–Polymer Composite Material by Abrasive Water Jet. Materials, 16(3), 1170. https://doi.org/10.3390/ma16031170
Hloch, S., Hlaváček, P., Vasilko, K., Cárach, J., Samardžić, I., Kozak, D., Hlavatý, I., Scucka, J., Klich, J., & Klichova, D. (2014). Abrasive waterjet (AWJ) titanium tangential turning evaluation. Metalurgija -Sisak Then Zagreb-, 53, 537–540.
Uthayakumar, M., Khan, M. A., Kumaran, S. T., Slota, A., & Zajac, J. (2016). Machinability of Nickel-Based Superalloy by Abrasive Water Jet Machining. Materials and Manufacturing Processes, 31(13), 1733–1739. https://doi.org/10.1080/10426914.2015.1103859
Yuvaraj, N., & Pradeep Kumar, M. (2015). Multiresponse Optimization of Abrasive Water Jet Cutting Process Parameters Using TOPSIS Approach. Materials and Manufacturing Processes, 30(7), 882–889. https://doi.org/10.1080/10426914.2014.994763
Khan, A., & Maity, K. P. (2016). Application of MCDM-Based TOPSIS Method for the Optimization of Multi Quality Characteristics of Modern Manufacturing Processes. International Journal of Engineering Research in Africa, 23, 33–51. https://doi.org/10.4028/www.scientific.net/JERA.23.33
Venkateshwar Reddy, P., Suresh Kumar, G., & Satish Kumar, V. (2020). Multi-response Optimization in Machining Inconel-625 by Abrasive Water Jet Machining Process Using WASPAS and MOORA. Arabian Journal for Science and Engineering, 45(11), 9843–9857. https://doi.org/10.1007/s13369-020-04959-9
Hloch, S., Srivastava, M., Krolczyk, J. B., Chattopadhyaya, S., Lehocka, D., Simkulet, V., & Krolczyk, G. M. (2018). Strengthening Effect after Disintegration of Stainless Steel Using Pulsating Water Jet. In Tehnicki Vjesnik-Technical Gazette (Vol. 25, Issue 4, pp. 1075–1079). UNIV OSIJEK, TECH FAC. https://doi.org/10.17559/TV-20170327134630
GMA Garnet Group. (2020). Our Garnet for Future Generations. https://www.gmagarnet.com/en-us/recycling
Martin, G. R., Lauand, C. T., Hennies, W. T., & Ciccu, R. (2000). Abrasives in water jet cutting systems (G. N. Panagiotou & T. N. Michalakopoulos, Eds.). Balkema Publishers.
Jinhong Mining Catalog of Products. (2019, October 10). Lianyungang Jinhong Mining Co. Ltd. http://www.lygjhky.com/Hva_En/Catalog.pdf
Taherdoost, H. (2023). Analysis of Simple Additive Weighting Method (SAW) as a MultiAttribute Decision-Making Technique: A Step-by-Step Guide. Journal of Management Science & Engineering Research, 6(1), 21–24. https://doi.org/10.30564/jmser.v6i1.5400
Perec, A., & Radomska-Zalas, A. (2022). WASPAS Optimization in Advanced Manufacturing. Procedia Computer Science, 207, 1193–1200. https://doi.org/10.1016/j.procs.2022.09.175
Keshavarz-Ghorabaee, M., Amiri, M., Zavadskas, E. K., Turskis, Z., & Antucheviciene, J. (2021). Determination of Objective Weights Using a New Method Based on the Removal Effects of Criteria (MEREC). Symmetry, 13(4), 525. https://doi.org/10.3390/sym13040525