Liver Tissue Surrogates: Development and Biomechanical Characterization
DOI:
https://doi.org/10.31181/smeor11202412Keywords:
Artificial Tissue, Liver, Surrogates, Biomechanical Testing, HyperelasticAbstract
Human liver tissue often suffers extensive damage during impact-based trauma injuries, such as those that happen in vehicle accidents. However, it is challenging to study the biomechanics of human liver tissue under different loading situations through experiments in a clinical context due to ethical and biosafety concerns. In this work, biofidelic liver tissue surrogates, which exhibit realistic mechanical characteristics, have been developed for the first time. The tissue surrogates were made using a four-part elastomer material that could be cast to any size or form, mimicking the mechanical behavior of the liver tissue. The tissue's behavior was tested under six different strain rates, ranging from low to high, and its non-linear mechanical behavior was characterized using the Yeoh hyperelastic curve fit model. To the best of our knowledge, no liver tissue surrogates have been developed which possess the same biomechanical properties as real liver tissue. The use of precisely developed tissue simulants can be beneficial for surgical training, trauma research, and the development of medical models for different liver disorders such as liver cirrhosis, fatty liver, and liver fibrosis.
Downloads
References
Welsh, R. H., Morris, A. P., & Hassan, A. M. (2007). Struck-side crashes involving post-regulatory European passenger cars: Crash characteristics and injury outcomes. International Journal of Vehicle Safety, 2(1–2), 103–115. https://doi.org/10.1504/IJVS.2007.012588
Tinkoff, G., Esposito, T. J., Reed, J., Kilgo, P., Fildes, J., Pasquale, M., & Meredith, J. W. (2008). American Association for the Surgery of Trauma Organ Injury Scale I: Spleen, Liver, and Kidney, Validation Based on the National Trauma Data Bank. Journal of the American College of Surgeons, 207(5), 646–655. https://doi.org/10.1016/J.JAMCOLLSURG.2008.06.342
Johnson, B., Campbell, S., & Campbell-Kyureghyan, N. (2021). Characterizing the Material Properties of the Kidney and Liver in Unconfined Compression and Probing Protocols with Special Reference to Varying Strain Rate. Biomechanics 2021, Vol. 1, Pages 264-280, 1(2), 264–280. https://doi.org/10.3390/BIOMECHANICS1020022
Aycock, R. S., & Seyer, J. M. (1989). Collagens of Normal and Cirrhotic Human Liver. Connective Tissue Research, 23(1), 19–31. https://doi.org/10.3109/03008208909103901
Yang, L., Fitié, C. F. C., van der Werf, K. O., Bennink, M. L., Dijkstra, P. J., & Feijen, J. (2008). Mechanical properties of single electrospun collagen type I fibers. Biomaterials, 29(8), 955–962. https://doi.org/10.1016/J.BIOMATERIALS.2007.10.058
Nava, A., Mazza, E., Kleinermann, F., Avis, N. J., McClure, J., & Bajka, M. (2004). Evaluation of the mechanical properties of human liver and kidney through aspiration experiments. Technology and Health Care, 12(3), 269–280. https://doi.org/10.3233/THC-2004-12306
Chatelin, S., Oudry, J., Périchon, N., Sandrin, L., Allemann, P., Soler, L., & Willinger, R. (2011). In vivo liver tissue mechanical properties by transient elastography: Comparison with dynamic mechanical analysis. Biorheology, 48(2), 75–88. https://doi.org/10.3233/BIR-2011-0584
Yamashita, Y., & Kubota, M. (1995). Ultrasonic imaging of elasticity of soft tissue based on measurement of internal displacement and strain. Proceedings of the IEEE Ultrasonics Symposium, 2, 1207–1211. https://doi.org/10.1109/ULTSYM.1995.495777
Sakuma, I., Nishimura, Y., Chui, C. K., Kobayashi, E., Inada, H., Chen, X., & Hisada, T. (2003). In vitro measurement of mechanical properties of liver tissue under compression and elongation using a new test piece holding method with surgical glue. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2673, 284–292. https://doi.org/10.1007/3-540-45015-7_27/COVER
Ghadiali, S. N., Banks, J., & Swarts, J. D. (2004). Finite element analysis of active Eustachian tube function. Journal of Applied Physiology, 97(2), 648–654. https://doi.org/10.1152/JAPPLPHYSIOL.01250.2003/ASSET/IMAGES/LARGE/ZDG0080432320005.JPEG
Wang, B. C., Wang, G. R., Yan, D. H., & Lid, Y. P. (1992). An Experimental Study on Biomechanical Properties of Hepatic Tissue Using a New Measuring Method. Bio-Medical Materials and Engineering, 2(3), 133–138. https://doi.org/10.3233/BME-1992-2305
Stingl, J., Báĉa, V., Ĉech, P., Kovanda, J., Kovandová, H., Mandys, V., Rejmontová, J., & Sosna, B. (2002). Morphology and some biomechanical properties of human liver and spleen. Surgical and Radiologic Anatomy, 24(5), 285–289. https://doi.org/10.1007/S00276-002-0054-1/METRICS
Karimi, A., & Shojaei, A. (2018). An Experimental Study to Measure the Mechanical Properties of the Human Liver. Digestive Diseases, 36(2), 150–155. https://doi.org/10.1159/000481344
Loftis, K. L., Mazuchowski, E. L., Clouser, M. C., & Gillich, P. J. (2019). Prominent Injury Types in Vehicle Underbody Blast. Military Medicine, 184(Supplement_1), 261–264. https://doi.org/10.1093/MILMED/USY322
Singh, G., & Chanda, A. (2021). Mechanical properties of whole-body soft human tissues : a review. Biomedical Materials, 16(6), 062004. https://doi.org/10.1088/1748-605X/ac2b7a
Singh, G., Gupta, V., & Chanda, A. (2022b). Mechanical Characterization of Rotating Triangle Shaped Auxetic Skin Graft Simulants. Facta Universitatis, Series: Mechanical Engineering, 0(0), 1–16. https://doi.org/10.22190/FUME220226038S
Makode, S., Singh, G., & Chanda, A. (2021). Development of novel anisotropic skin simulants. Physica Scripta, 96(12), 125019. https://doi.org/10.1088/1402-4896/AC2EFD
Singh, G., Gupta, V., & Chanda, A. (2022a). Artificial skin with varying biomechanical properties. Materials Today: Proceedings, 62, 3162–3166. https://doi.org/10.1016/J.MATPR.2022.03.433
Singh, G., & Chanda, A. (2023d). Development and biomechanical testing of artificial surrogates for vaginal tissue. Advances in Materials and Processing Technologies. https://doi.org/10.1080/2374068X.2023.2198837
Bisplinghoff, J. A., Kemper, A. R., & Duma, S. M. (2012). Dynamic material properties of the pregnant human uterus. Journal of Biomechanics, 45(9), 1724–1727. https://doi.org/10.1016/J.JBIOMECH.2012.04.001
Martins, Pedro A.L.S., Filho, A. L. S., Fonseca, A. M. R. M. I., Santos, A., Santos, L., Mascarenhas, T., Jorge, R. M. N., & Ferreira, A. J. M. (2011). Uniaxial mechanical behavior of the human female bladder. International Urogynecology Journal, 22(8), 991–995. https://doi.org/10.1007/s00192-011-1409-0
Egorov, V. I., Schastlivtsev, I. V., Prut, E. V., Baranov, A. O., & Turusov, R. A. (2002). Mechanical properties of the human gastrointestinal tract. Journal of Biomechanics, 35(10), 1417–1425. https://doi.org/10.1016/S0021-9290(02)00084-2
Bourgouin, S., Bège, T., Masson, C., Arnoux, P. J., Mancini, J., Garcia, S., Brunet, C., & Berdah, S. V. (2012). Biomechanical characterisation of fresh and cadaverous human small intestine: Applications for abdominal trauma. Medical and Biological Engineering and Computing, 50(12), 1279–1288. https://doi.org/10.1007/S11517-012-0964-Y/FIGURES/6
Jin, X., Zhu, F., Mao, H., Shen, M., & Yang, K. H. (2013). A comprehensive experimental study on material properties of human brain tissue. Journal of Biomechanics, 46(16), 2795–2801. https://doi.org/10.1016/J.JBIOMECH.2013.09.001
Kemper, A. R., Santago, A. C., Stitzel, J. D., Sparks, J. L., & Duma, S. M. (2012). Biomechanical response of human spleen in tensile loading. Journal of Biomechanics, 45(2), 348–355. https://doi.org/10.1016/j.jbiomech.2011.10.022
Polio, S. R., Kundu, A. N., Dougan, C. E., Birch, N. P., Ezra Aurian-Blajeni, D., Schiffman, J. D., Crosby, A. J., & Peyton, S. R. (2018). Cross-platform mechanical characterization of lung tissue. PLOS ONE, 13(10), e0204765. https://doi.org/10.1371/JOURNAL.PONE.0204765
Singh, G., & Chanda, A. (2023c). Biofidelic gallbladder tissue surrogates. Advances in Materials and Processing Technologies. https://doi.org/10.1080/2374068X.2023.2198835
Singh, G., & Chanda, A. (2023e). Development and mechanical characterization of artificial surrogates for brain tissues. Biomedical Engineering Advances, 5, 100084. https://doi.org/10.1016/J.BEA.2023.100084
Shergold, O. A., Fleck, N. A., & Radford, D. (2006). The uniaxial stress versus strain response of pig skin and silicone rubber at low and high strain rates. International Journal of Impact Engineering, 32(9), 1384–1402. https://doi.org/10.1016/J.IJIMPENG.2004.11.010
Singh, G., & Chanda, A. (2023a). Biofidelic Tongue and Tonsils Tissue Surrogates. Materials Horizons: From Nature to Nanomaterials, Part F1471, 159–170. https://doi.org/10.1007/978-981-99-5064-5_10
Singh, G., & Chanda, A. (2023b). Development and Biomechanical Testing of Human Stomach Tissue Surrogates. Materials Horizons: From Nature to Nanomaterials, Part F1471, 113–125. https://doi.org/10.1007/978-981-99-5064-5_7/TABLES/2
Martins, P. A. L. S., Natal Jorge, R. M., & Ferreira, A. J. M. (2006). A Comparative Study of Several Material Models for Prediction of Hyperelastic Properties: Application to Silicone-Rubber and Soft Tissues. Strain, 42(3), 135–147. https://doi.org/10.1111/j.1475-1305.2006.00257.x
Velardi, F., Fraternali, F., & Angelillo, M. (2006). Anisotropic constitutive equations and experimental tensile behavior of brain tissue. Biomechanics and Modeling in Mechanobiology, 5(1), 53–61. https://doi.org/10.1007/S10237-005-0007-9/METRICS
Christ, A. F., Franze, K., Gautier, H., Moshayedi, P., Fawcett, J., Franklin, R. J. M., Karadottir, R. T., & Guck, J. (2010). Mechanical difference between white and gray matter in the rat cerebellum measured by scanning force microscopy. Journal of Biomechanics, 43(15), 2986–2992. https://doi.org/10.1016/J.JBIOMECH.2010.07.002