Investigation of the Settlement Behavior of Ballasted Railway Tracks Due to Dynamic Loading

Authors

DOI:

https://doi.org/10.31181/smeor21202528

Keywords:

Railway ballast, Settlement models, Dynamic loading, Track geometry, Ballast compaction

Abstract

This study investigates the settlement behavior of ballasted railway tracks under dynamic loading, providing a comprehensive evaluation of track deterioration models using extensive field data. Leveraging regression analysis, the research examines logarithmic and exponential settlement trends based on operational conditions and highlights key influences, such as ballast compactness and maintenance interventions. Validated against historical ORE (Research and Testing Office) studies, the results suggest refinements in constants to better predict contemporary track behavior. The integration of advanced computational and experimental techniques is proposed to improve model accuracy, ensuring effective maintenance planning and enhanced track durability.

Downloads

Download data is not yet available.

References

Esveld, C. (2001). Modern Railway Track. (2nd ed.). Zaltbommel: MRT-Productions.

Kuchak, A. T. J., Marinkovic, D., & Zehn, M. (2020). Finite element model updating - Case study of a rail damper. Structural Engineering and Mechanics, 73(1), 27-35. https://doi.org/10.12989/sem.2020.73.1.027.

Kuchak, A. T. J., Marinkovic, D., & Zehn, M. (2021). Parametric Investigation of a Rail Damper Design Based on a Lab-Scaled Model. Journal of Vibration Engineering and Technologies, 9(1), 51-60. https://doi.org/10.1007/s42417-020-00209-2

Fischer, S., Harangozó, D., Németh, D., Kocsis, B., Sysyn, M., Kurhan, D., & Brautigam, A. (2023). Investigation of heat-affected zones of thermite rail weldings. Facta Universitatis, Series: Mechanical Engineering, 22(4), 689-710. https://doi.org/10.22190/FUME221217008F.

Alsirawan, R., & Koch, E. (2023). Dynamic Analysis of Geosynthetic-Reinforced Pile-Supported Embankment for a High-Speed Rail. Acta Polytechnica Hungarica, 21(1), 31-50. https://doi.org/10.12700/APH.21.1.2024.1.3.

Dižo, J., Blatnický, M., Harušinec, J., & Suchánek, A. (2022). Assessment of dynamics of a rail vehicle in terms of running properties while moving on a real track model. Symmetry, 14(3), 536. https://doi.org/10.3390/sym14030536.

Mikhailov, E., Semenov, S., Shvornikova, H., Gerlici, J., Kovtanets, M., Dižo, J., Blatnický, M., & Harušinec, J. (2021). A study of improving running safety of a railway wagon with an independently rotating wheel's flange. Symmetry, 13(10), 1955. https://doi.org/10.3390/sym13101955.

Bižić, M., & Petrović, D. (2024). Analytical Identification of Critical Section of Axle of Freight Wagon. Acta Polytechnica Hungarica, 21(1), 153-166. https://doi.org/10.12700/APH.21.1.2024.1.10.

Fischer, S., & Kocsis Szürke, S. (2023). Detection process of energy loss in electric railway vehicles. Facta Universitatis, Series: Mechanical Engineering, 21(1), 81-99. https://doi.org/10.22190/FUME221104046F.

Kampczyk, A., Gamon, W., & Gawlak, K. (2023). Integration of Traction Electricity Consumption Determinants with Route Geometry and Vehicle Characteristics. Energies, 16(6), 2689. https://doi.org/10.3390/en16062689.

Volkov, V., Taran, I., Volkova, T., Pavlenko, O., & Berezhnaja, N. (2020). Determining the efficient management system for a specialized transport enterprise. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2020(4), 185-191. https://doi.org/10.33271/nvngu/2020-4/185.

Saukenova, I., Oliskevych, M., Taran, I., Toktamyssova, A., Aliakbarkyzy, D., & Pelo, R. (2022). Optimization of schedules for early garbage collection and disposal in the megapolis. Eastern-European Journal of Enterprise Technologies, 1(3(115)), 13-23. https://doi.org/10.15587/1729-4061.2022.251082.

Ficzere, P. (2023). The role of artificial intelligence in the development of rail transport. Cognitive Sustainability, 2(4). https://doi.org/10.55343/cogsust.81.

Vitković, N., Marinković, D., Stan, S. D., Simonović, M., Miltenović, A., Tomić, M., & Barać, M. (2024). Decision Support System for Managing Marshalling Yard Deviations. Acta Polytechnica Hungarica, 21(1), 121-134. https://doi.org/10.12700/APH.21.1.2024.1.8.

Indraratna, B., Salim, W., & Rujikiatkamjorn, C. (2023). Advanced rail geotechnology: Ballasted track (2nd ed.). London: CRC Press. https://doi.org/10.1201/9781003278979.

Fischer, S. (2017). Breakage test of railway ballast materials with new laboratory method. Periodica Polytechnica Civil Engineering, 61(4), 794-802. https://doi.org/10.3311/PPci.8549.

Fischer, S. (2023). Evaluation of inner shear resistance of layers from mineral granular materials. Facta Universitatis, Series: Mechanical Engineering. https://doi.org/10.22190/FUME230914041F.

Ézsiás, L., Tompa, R., & Fischer, S. (2024). Investigation of the Possible Correlations between Specific Characteristics of Crushed Stone Aggregates. Spectrum of Mechanical Engineering and Operational Research, 1(1), 10-26. https://doi.org/10.31181/smeor1120242.

Xu, Z., Zhao, C., Zhai, W., Shi, C., & Feng, Y. (2018). Investigation of track settlement and ballast degradation in the high-speed railway using a full-scale laboratory test. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 233(8), 869-881. https://doi.org/10.1177/0954409718812231.

Zhou, T., Hu, B., & Hua, B. (2014). Study behavior of railway ballast under cyclic loading. Advanced Materials Research, 919-921, 1155-1159. https://doi.org/10.4028/www.scientific.net/amr.919-921.1155.

Kaewunruen, S. and Tang, T. (2019). Dynamic behaviour of railway ballast exposed to flooding conditions. International Journal of GEOMATE, 16(57). https://doi.org/10.21660/2019.57.8113.

Li, X., Ekh, M., & Nielsen, J. C. O. (2016). Three‐dimensional modelling of differential railway track settlement using a cycle domain constitutive model. International Journal for Numerical and Analytical Methods in Geomechanics, 40(12), 1758-1770. https://doi.org/10.1002/nag.2515.

Varandas, J. N., Hölscher, P., & Chastre, C. (2013). Settlement of ballasted track under traffic loading: application to transition zones. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 228(3), 242-259. https://doi.org/10.1177/0954409712471610.

Park, J. B. and Lim, Y. (2020). Development of a settlement prediction model for upper subgrade layers of ballasted tracks. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 235(7), 801-814. https://doi.org/10.1177/0954409720965814.

Wang, H. Y. and Markine, V. (2018). Modelling of the long-term behaviour of transition zones: prediction of track settlement. Engineering Structures, 156, 294-304. https://doi.org/10.1016/j.engstruct.2017.11.038.

Hamarat, M., Papaelias, M., Silvast, M., & Kaewunruen, S. (2020). The effect of unsupported sleepers/bearers on dynamic phenomena of a railway turnout system under impact loads. Applied Sciences, 10(7), 2320. https://doi.org/10.3390/app10072320.

Huang, H., Moaveni, M., Schmidt, S., Tutumluer, E., & Hart, J. M. (2018). Evaluation of railway ballast permeability using machine vision–based degradation analysis. Transportation Research Record: Journal of the Transportation Research Board, 2672(10), 62-73. https://doi.org/10.1177/0361198118790849.

Sysyn, M., Kovalchuk, V., Gerber, U., Nabochenko, O., & Pentsak, A. (2020). Experimental study of railway ballast consolidation inhomogeneity under vibration loading. Pollack Periodica, 15(1), 27-36. https://doi.org/10.1556/606.2020.15.1.3.

Yan, Y., Zhao, J., & Ji, S. (2014). Discrete element analysis of breakage of irregularly shaped railway ballast. Geomechanics and Geoengineering, 10(1), 1-9. https://doi.org/10.1080/17486025.2014.933891.

Zhou, T., Hu, B., Yan, B., & Xu, P. (2013). Discrete element method simulation of mesomechanics of railway ballast during tamping process. Advanced Materials Research, 690-693, 2726-2729. https://doi.org/10.4028/www.scientific.net/amr.690-693.2726.

Lichtberger, B. (2005). Track compendium. (1st ed.). Hamburg: Eurailpress Tetzlaff-Hestra GmbH & Co. KG.

ORE (Office de Recherches et d'Essais). (1970). Frage 071, Bericht Nr. 10: Eigenschaften des Schotters (Labor- und Streckenversuche) Band 1 - Text und Anlagen. Utrecht, The Netherlands.

ORE (Office de Recherches et d'Essais). (1975). 0117/RP7/D Bericht Nr. 7: Untersuchung der Entwicklung der geometrischen Gleislage nach Massgabe der Verkehrsbelastung. Utrecht, The Netherlands.

Kumar, N., Suhr, B., Marschnig, S., Dietmaier, P., Marte, C., & Six, K. (2019). Micro-mechanical investigation of railway ballast behavior under cyclic loading in a box test using dem: effects of elastic layers and ballast types. Granular Matter, 21(4). https://doi.org/10.1007/s10035-019-0956-9.

Xu, Z., Zhao, C., Zhai, W., Shi, C., & Feng, Y. (2018). Investigation of track settlement and ballast degradation in the high-speed railway using a full-scale laboratory test. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 233(8), 869-881. https://doi.org/10.1177/0954409718812231.

Sayeed, M. A. and Shahin, M. A. (2018). Design of ballasted railway track foundations using numerical modelling. Part I: development. Canadian Geotechnical Journal, 55(3), 353-368. https://doi.org/10.1139/cgj-2016-0633.

Farooq, M. A., Meena, N. K., Punetha, P., Nimbalkar, S., & Lam, N. (2024). Experimental and computational analyses of sustainable approaches in railways. Infrastructures, 9(3), 53. https://doi.org/10.3390/infrastructures9030053.

Liu, G., Yang, F., Wang, S., Jing, G., & Nateghi, Y. (2022). Railway ballast fouling, inspection, and solutions - a review. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 237(8), 969-982. https://doi.org/10.1177/09544097221148057.

Ižvolt, L., Dobeš, P., Holešová, M., & Navikas, D. (2023). Assesment of the possibility of foam glass application in the sub-ballast layers. Journal of Civil Engineering and Management, 29(3), 253-267. https://doi.org/10.3846/jcem.2023.18429.

Albahkali, T., Alsanabani, N., Al-Bahkali, E. A., & Souli, M. (2021). A concept to estimate the life cycle of the railway track using finite element modeling. The International Journal of Multiphysics, 15(3). https://doi.org/10.21152/1750-9548.15.3.265.

Han, L., Liao, Y., Wang, H., & Zhang, H. (2023). Analysis and prediction of railway track longitudinal level using multiple machine learning methods. Measurement Science and Technology, 35(2), 024001. https://doi.org/10.1088/1361-6501/ad060a.

Liao, Y., Liu, H., Wang, H. Y., & Zhang, H. (2022). Prediction models for railway track geometry degradation using machine learning methods: a review. Sensors, 22(19), 7275. https://doi.org/10.3390/s22197275.

Traquinho, N., Vale, C., Ribeiro, D., Meixedo, A., Montenegro, P., Mosleh, A., & Calçada, R. (2023). Damage identification for railway tracks using onboard monitoring systems in in-service vehicles and data science. Machines, 11(10), 981. https://doi.org/10.3390/machines11100981.

Tsunashima, H. (2019). Condition monitoring of railway tracks from car-body vibration using a machine learning technique. Applied Sciences, 9(13), 2734. https://doi.org/10.3390/app9132734.

Sresakoolchai, J. and Kaewunruen, S. (2022). Track geometry prediction using three-dimensional recurrent neural network-based models cross-functionally co-simulated with BIM. Sensors, 23(1), 391. https://doi.org/10.3390/s23010391.

Chenariyan Nakhaee, M., Hiemstra, D., Stoelinga, M., & van Noort, M. (2019). The recent applications of machine learning in rail track maintenance: A survey. In Reliability, Safety, and Security of Railway Systems. Modelling, Analysis, Verification, and Certification: Third International Conference, RSSRail 2019, Lille, France, June 4–6, 2019, Proceedings 3 (pp. 91-105). Springer International Publishing. https://doi.org/10.1007/978-3-030-18744-6_6.

Saussine, G., Quezada, J. C., Breul, P., & Radjai, F. (2014, April). Railway ballast settlement: a new predictive model. In Proceedings of the Second International Conference on Railway Technology: Research, Development and Maintenance", Civil-Comp Press, Stirlingshire, UK, Paper (Vol. 121). Retrieved from https://www.insitutek.com/wp-content/uploads/2015/02/Railway-Ballast-Settlement-A-New-Predictive-Model-Saussine-Quezada-Breul-and-Radjai-Proceedings-of-the-Second-International-Conference-on-Railway-Technology-2014.pdf (Accessed 20-09-2024).

Abadi, T., Le Pen, L., Zervos, A., & Powrie, W. (2016). A review and evaluation of ballast settlement models using results from the Southampton Railway Testing Facility (SRTF). Procedia Engineering, 143, 999-1006. https://doi.org/10.1016/j.proeng.2016.06.089.

Grossoni, I., Powrie, W., Zervos, A., Bezin, Y., & Le Pen, L. (2021). Modelling railway ballasted track settlement in vehicle-track interaction analysis. Transportation Geotechnics, 26, 100433. https://doi.org/10.1016/j.trgeo.2020.100433.

Alqatawna, A., Sánchez-Cambronero, S., & Gallego, M. I. (2023). Settlement Models Review for Ballasted Railway Tracks as a Tool to Analyze the Influence of the Horizontal Alignment Design in the Maintenance Period. Transportation Research Procedia, 71, 53-60. https://doi.org/10.1016/j.trpro.2023.11.057.

Fischer, S. (2022a). Geogrid reinforcement of ballasted railway superstructure for stabilization of the railway track geometry–A case study. Geotextiles and Geomembranes, 50(5), 1036-1051. https://doi.org/10.1016/j.geotexmem.2022.05.005.

Fischer, S. (2022b). Investigation of the horizontal track geometry regarding geogrid reinforcement under ballast. Acta Polytechnica Hungarica, 19(3), 89-101. https://doi.org/10.12700/APH.19.3.2022.3.8.

Szalai, S., Szívós, B. F., Kocsis, D., Sysyn, M., Liu, J., & Fischer, S. (2024). The Application of DIC in Criminology Analysis Procedures to Measure Skin Deformation. Journal of Applied and Computational Mechanics, 10(4), 817-829. https://doi.org/10.22055/jacm.2024.46966.4634.

Kocsis Szürke, S., Kovács, G., Sysyn, M., Liu, J., & Fischer, S. (2023). Numerical Optimization of Battery Heat Management of Electric Vehicles. Journal of Applied and Computational Mechanics, 9(4), 1076-1092. https://doi.org/10.22055/jacm.2023.43703.4119.

Published

2025-01-01

How to Cite

Fischer, S. (2025). Investigation of the Settlement Behavior of Ballasted Railway Tracks Due to Dynamic Loading. Spectrum of Mechanical Engineering and Operational Research, 2(1), 24-46. https://doi.org/10.31181/smeor21202528