Effect of Repetitive High-Density Current Pulses on Plastic Deformation of Copper Wires under Stepwise Loading

Authors

DOI:

https://doi.org/10.31181/smeor1120243

Keywords:

Electroplastic Effect, Creep, Current Pulses, Copper, Tensile Deformation

Abstract

High-density electric current pulses increase the plasticity and reduce the yield stress of metals with negligible heat generation. This effect has great potential for the development of energy-saving technologies for processing hard-to-deform metallic materials. Despite the long history of the study of electroplasticity, there is still no consensus on the physical nature of this effect. In this paper, the effect of repetitive pulses applied at the same or gradually increasing tensile stress on the plastic deformation of copper wire is investigated using a home-made experimental setup. The electroplasticity of the wire in the delivery state and after annealing is compared. It is shown that for a constant tensile stress, the incremental plastic deformation of the wire decreases with each successive pulse. This effect is stronger for annealed wires because they have a lower dislocation density and therefore a lower plasticity resource. The Joule heat release in the specimen and the heating due to plastic deformation are evaluated. The results obtained will be used to fit the parameters of the atomistic model being developed to describe the interaction of electron flow with dislocations.

Downloads

Download data is not yet available.

References

Troitskii, O. A. (1969) Electromechanical effect in metals. JETP Letters, 1, 18–22. http://jetpletters.ru/ps/0/article_25672.shtml

Okazaki, K., Kagawa, M., & Conrad, H. (1978). A study of the electroplastic effect in metals. Scripta Metallurgica, 12(11), 1063-1068. https://doi.org/10.1016/0036-9748(78)90026-1

Stolyarov, V., & Misochenko, A. (2023). A pulsed current application to the deformation processing of materials. Materials, 16(18), art. no. 6270. https://doi.org/10.3390/ma16186270

Izadpanah, S., Cao, X., An, D., Li, X., & Chen, J. (2023). One step forward to electrically assisted forming mechanisms and computer simulation: A review. Advanced Engineering Materials, 25(5), art. no. 2200425. https://doi.org/10.1002/adem.202200425

Dong, H.-R., Li, X.-Q., Li Y., Wang, Y.-H., Wang, H.-B., Peng, X.-Y., & Li, D.-S. (2022). A review of electrically assisted heat treatment and forming of aluminum alloy sheet. International Journal of Advanced Manufacturing Technology, 120 (11-12), 7079 – 7099. https://doi.org/10.1007/s00170-022-08996-6

Ding, J., Li H., Bian, T., & Ma, J. (2018). Electroplasticity and electrically-assisted forming: A critical review. Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 39(1), art. no. 021201. https://doi.org/10.7527/S1000-6893.2017.021201

Grimm, T. J., & Mears, L. M. (2022). Skin effects in electrically assisted manufacturing. Manufacturing Letters, 34, 67 – 70. https://doi.org/10.1016/j.mfglet.2022.09.006

Zhan, L., Li, R., Wang, J., Xue, X., Wang, Y., & Lv, Z. (2023). Thermoelectric coupling deep drawing process of ZK60 magnesium alloys. International Journal of Advanced Manufacturing Technology, 126(7-8), 3005 – 3014. https://doi.org/10.1007/s00170-023-11300-9

Lv, Z., Zhou, Y., Zhan, L., Zang, Z., Zhou, B., & Qin, S. (2021). Electrically assisted deep drawing on high-strength steel sheet. International Journal of Advanced Manufacturing Technology, 112(3-4), 763 – 773. https://doi.org/10.1007/s00170-020-06335-1

Qian, L., Zhan, L., Zhou, B., Zhang, X., Liu, S., & Lv, Z. (2021). Effects of electroplastic rolling on mechanical properties and microstructure of low-carbon martensitic steel. Materials Science and Engineering: A, 812, 141144. https://doi.org/10.1016/j.msea.2021.141144

Pochivalov Yu, I. (2023). Structure and properties of low-alloy steel 10G2FBYu after rolling in embossed rolls under conditions of electroplasticity. Izvestiya Ferrous Metallurgy, 66(6), 659 – 665. https://doi.org/10.17073/0368-0797-2023-6-659-665

Li, C., Xu, Z., Peng, L., & Lai, X. (2022). An electric-pulse-assisted stamping process towards springback suppression and precision fabrication of micro channels. International Journal of Mechanical Sciences, 218, 107081. https://doi.org/10.1016/j.ijmecsci.2022.107081

Perkins, T. A., Kronenberger, T. J., & Roth, J. T. (2007). Metallic forging using electrical flow as an alternative to warm/hot working. Journal of Manufacturing Science and Engineering, 129(1), 84–94. https://doi.org/10.1115/1.2386164

Perkins, T. A., & Roth, J. T. (2005). The reduction of deformation energy and increase in workability of metals through an applied electric current. American Society of Mechanical Engineers, Manufacturing Engineering Division, MED, 16-1, 313 – 322. https://doi.org/10.1115/IMECE2005-81060

Zhao, L., Chen, G., Liu, J., Wei, H., & Huang, J. (2024). Effect of pulse current parameters on electroplastically assisted dry cutting performance of W93NiFe alloy. International Journal of Advanced Manufacturing Technology, 131(5-6), 2123 – 2131. https://doi.org/10.1007/s00170-022-10762-7

Dong, H., Li, X., Li, Y., Zhao, S., Wang, H., Liu, X., Meng, B., & Du, K. (2023). The anomalous negative electric current sensitivity of a precipitation hardened Al alloy during electrically-assisted forming. Journal of Materials Research and Technology, 24, 9356 – 9368. https://doi.org/10.1016/j.jmrt.2023.05.161

Xu, Z., Jiang, T., Huang, J., Peng, L., Lai, X., & Fu, M. W. (2022). Electroplasticity in electrically-assisted forming: Process phenomena, performances and modeling. International Journal of Machine Tools and Manufacture, 175, 103871. https://doi.org/10.1016/j.ijmachtools.2022.103871

Tiwari, J., Prasad, K., Krishnaswamy, H., & Amirthalingam, M. (2023). Energy density to explain the ductility loss during electroplastic deformation of a dual phase steel. Materials Characterization, 205, 113359. https://doi.org/10.1016/j.matchar.2023.113359

Abdullina, D. U., Bebikhov, Yu. V., Tatarinov, P. S. & Dmitriev, S. V. (2023). Review of recent achievements in the field of electroplastic metal forming. Basic Problems of Material Science, 20(4), 469–483. https://doi.org/10.25712/ASTU.1811-1416.2023.04.006

Dimitrov, N., Liu, Yu., & Horstemeyer, M. (2020). Electroplasticity: A review of mechanisms in electro-mechanical coupling of ductile metals. Mechanics of Advanced Materials and Structures, 29, 1-12. https://doi.org/10.1080/15376494.2020.1789925

Kim, M.-J., Yoon, S., Park, S., Jeong, H.-J., Park, J.-W., Kim, K., Jo, J., Heo, T., Hong, S.-T., Cho, S.H., Kwon, Y.-K., Choi, I.-S., Kim, M., & Han, H. N. (2020). Elucidating the origin of electroplasticity in metallic materials. Applied Materials Today, 21, 100874. https://doi.org/10.1016/j.apmt.2020.100874

Li, X., Zhu, Q., Hong, Y., Zheng, H., Wang, J., Wang, J., & Zhang, Z. (2022). Revealing the pulse-induced electroplasticity by decoupling electron wind force. Nature Communications, 13(1), 6503. https://doi.org/10.1038/s41467-022-34333-2

Krishnaswamy, H., Tiwari, J., & Amirthalingam, M. (2024). Revisiting electron-wind effect for electroplasticity: A critical interpretation. Vacuum, 221, 112937. https://doi.org/10.1016/j.vacuum.2023.112937

Li, H., Jin, F., Zhang, M., Ding, J., Bian, T., Li, J., Ma, J., Zhang, L., & Wang, Y. (2023). Decoupling electroplasticity by temporal coordination design of pulse current loading and straining. Materials Science and Engineering: A, 881, 145435. https://doi.org/10.1016/j.msea.2023.145435

Dimitrov, N.K., Liu, Y., & Horstemeyer, M.F. (2022). Electroplasticity: A review of mechanisms in electro-mechanical coupling of ductile metals. Mechanics of Advanced Materials and Structures, 29(5), 705 – 716. https://doi.org/10.1080/15376494.2020.1789925

Hao, S., Chu, Q., Li, W., Yang, X., & Zou, Y. (2023). Effect of electropulsing treatment on the microstructure and mechanical properties of metallic materials: a review. Cailiao Daobao/Materials Reports, 37(4), 21030039. https://doi.org/10.11896/cldb.21030039

Liu, J., Jia, D., Fu, Y., Kong, X., Lv, Z., Zeng, E., & Gao, Q. (2024). Electroplasticity effects: from mechanism to application. International Journal of Advanced Manufacturing Technology, 131(5-6), 3267–3286. https://doi.org/10.1007/s00170-023-12072-y

Jeong, H.-J., Kim, M.-J., Choi, S.-J., Park, J.-W., Choi, H., Luu, V. T., Hong, S.-T., & Han, H. N. (2020). Microstructure reset-based self-healing method using sub-second electric pulsing for metallic materials. Applied Materials Today, 20, 100755. https://doi.org/10.1016/j.apmt.2020.100755

Kim, M.-J., Lee, M.-G., Krishnaswamy, H., Hong, S.-T., Choi, I.-S., Kim, D., Oh, K. H., & Han, H. (2016). Electric current–assisted deformation behavior of Al-Mg-Si alloy under uniaxial tension. International Journal of Plasticity, 94, 148-170. https://doi.org/10.1016/j.ijplas.2016.09.010

Wang, X., Zhou, B., Huang, H., Niu, J., Guan, S., & Yuan, G. (2022). Extraordinary ductility enhancement of Mg-Nd-Zn-Zr alloy achieved by electropulsing treatment. Journal of Magnesium and Alloys. https://doi.org/10.1016/j.jma.2022.07.007

Dobras, D., Zimniak, Z., Zwierzchowski, M., & Dziubek, M. (2024). Effect of strain rate on the mechanical behavior of Al-Mg alloy under a pulsed electric current. Metallurgical and Materials Transactions A, 55, 1284–1294. https://doi.org/10.1007/s11661-024-07335-6

Herbst, S., Karsten, E., Gerstein, G., Reschka, S., Nürnberger, F., Zaefferer, S., & Maier, H.J. (2023). Electroplasticity mechanisms in hcp materials. Advanced Engineering Materials, 25(18), 2201912. https://doi.org/10.1002/adem.202201912

Yin, F., Ma, S., Hu, S., Liu, Y., Hua, L., & Cheng, G. J. (2023). Understanding the microstructure evolution and mechanical behavior of titanium alloy during electrically assisted plastic deformation process. Materials Science and Engineering: A, 869, 144815. https://doi.org/10.1016/j.msea.2023.144815

Tiwari, J., Pratheesh, P., Bembalge, O.B., Krishnaswamy, H., Amirthalingam, M., & Panigrahi, S. K. (2021). Microstructure dependent electroplastic effect in AA 6063 alloy and its nanocomposites. Journal of Materials Research and Technology, 12, 2185 – 2204. https://doi.org/10.1016/j.jmrt.2021.03.112

Jeong, H.-J., Park, J.-W., Shin, E., Woo, W., Kim, M.-J., & Han, H. N. (2022). Electric current-induced precipitation hardening in advanced high-strength steel. Scripta Materialia, 220, 114933. https://doi.org/10.1016/j.scriptamat.2022.114933

McNeff, P. S., & Paul, B. K. (2020). Electroplasticity effects in Haynes 230. Journal of Alloys and Compounds, 829, 154438. https://doi.org/10.1016/j.jallcom.2020.154438

Dong, H., Zhou, H., Li, Y., Li, X., Zhao, S., Liu, X., & Wang, Y. (2024) Temperature-dependent electroplasticity in the Invar 36 alloy. Journal of Materials Research and Technology, 29, 3842–3848. https://doi.org/10.1016/j.jmrt.2024.02.125

Chen, C., Li, C., Li, C., Li, F., Zhang, G., & Yu, G. (2022). Effect of angle between pulse current and load direction on flow stress of Ti-6Al-4V alloy under uniaxial tension. Journal of Materials Engineering and Performance, 31(11), 9283 – 9293. https://doi.org/10.1007/s11665-022-06921-2

Yang, Z., Bao, J., Ding C., Son, S., Ning, Z., Xu, J., Shan, D., Guo, B., & Kim, H. S. (2023). Electroplasticity in the Al0.6CoCrFeNiMn high entropy alloy subjected to electrically-assisted uniaxial tension. Journal of Materials Science and Technology, 148, 209 – 221. https://doi.org/10.1016/j.jmst.2022.11.031

Li, X., Hong, Y., Ke, H., Zhong, L., Zou, Y., & Wang, J. In situ TEM study of pulse-enhanced plasticity of monatomic metallic glasses (2024) Journal of Materials Science and Technology, 195, 208–217. https://doi.org/10.1016/j.jmst.2023.12.068

Li, X., Turner, J., Bustillo, K., & Minor, A. M. (2022). In situ transmission electron microscopy investigation of electroplasticity in single crystal nickel. Acta Materialia, 223, 117461. https://doi.org/10.1016/j.actamat.2021.117461

Kang, W., Beniam, I., & Qidwai, S. M. (2016). In situ electron microscopy studies of electromechanical behavior in metals at the nanoscale using a novel microdevice-based system. Review of Scientific Instruments, 87(9), 095001. https://doi.org/10.1063/1.4961663

Zhou, C., Zhan, L., Li, H., Liu, C., Xu, Y., Ma, B., Yang, Y., & Huang, M. (2022). Dislocation reconfiguration during creep deformation of an Al-Cu-Li alloy via electropulsing. Journal of Materials Science and Technology, 130, 27–34. https://doi.org/10.1016/j.jmst.2022.05.008

Zhao, S., Zhang, R., Chong, Y., Li, X., Abu-Odeh, A., Rothchild, E., Chrzan, D.C., Asta, M., Morris, J. W., Jr., & Minor, A. M. (2021). Defect reconfiguration in a Ti–Al alloy via electroplasticity. Nature Materials, 20(4), 468 – 472. https://doi.org/10.1038/s41563-020-00817-z

Kumar, A., & Paul, S.K. (2020). Healing of fatigue crack in steel with the application of pulsed electric current. Materialia, 14, 100906. https://doi.org/10.1016/j.mtla.2020.100906

Yoon, S., Gu, S., Li, S., Kimura, Y., Toku, Y., & Ju, Y. (2023). Efficiency improvement of fatigue crack healing by multiple high-density pulsed electric currents: Application to austenitic stainless steel. Engineering Fracture Mechanics, 284, 109235. https://doi.org/10.1016/j.engfracmech.2023.109235

Zhao, Z., Li, X., Yuan, H., Zhao, Y., & Qi, J. (2023). Influence of pulse frequency on the wear and corrosion resistance of Al-4.5Mg-3Si alloy. Journal of Materials Engineering and Performance, 32(24), 11448 – 11456. https://doi.org/10.1007/s11665-023-07942-1

Xue,, L., Liao C., Wu, M., Li, Q., Hu, Z., Yang, Y., & Liu, J. (2024). Improvement of mechanical properties and corrosion resistance of SLM-AlSi10Mg alloy by an eco-friendly electric pulse treatment. Journal of Cleaner Production, 439, 140864. https://doi.org/10.1016/j.jclepro.2024.140864

Barimani-Varandi, A., & Jalali Aghchai, A. (2021). Enhancement of the tensile shear strength for joining low-ductility aluminium to high-strength steel by using electrically-assisted mechanical clinching (EAMC). Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 235(11), 1790 – 1799. https://doi.org/10.1177/0954405421995652

Xiao, X., Xu, S., Sui, D., & Zhang, H. (2021). The electroplastic effect on the deformation and twinning behavior of AZ31 foils during micro-bending tests. Materials Letters, 288, 129362. https://doi.org/10.1016/j.matlet.2021.129362

Bao, J., Chen, W., Bai, J., Xu, J., Shan, D., & Guo, B. (2022). Local softening deformation and phase transformation induced by electric current in electrically-assisted micro-compression of Ti–6Al–4V alloy. Materials Science and Engineering: A, 831, 142262. https://doi.org/10.1016/j.msea.2021.142262

Li, X., Xu, Z., Guo, P., Peng, L., & Lai, X. (2022). Electroplasticity mechanism study based on dislocation behavior of Al6061 in tensile process. Journal of Alloys and Compounds, 910, 164890. https://doi.org/10.1016/j.jallcom.2022.164890

Li, P., Liu, L., Hu, L., Zhang, Y., Yan, S.-L., & Xue, K.-M. (2023). Flow softening rules and mechanisms in Ti–6Al–4V alloy sheet during electrically assisted near-isothermal tension. Journal of Materials Science, 58(4), 1925 – 1938. https://doi.org/10.1007/s10853-023-08140-z

Cao, X., An, D., Liu, Q., Chen, G., & Li, X. (2024). Precipitation hardening characterization and stress prediction model in electrically-assisted Ti2AlNb uniaxial tension. Intermetallics, 167, 108214. https://doi.org/10.1016/j.intermet.2024.108214

Wu, C., Zhou, Y.J., & Liu, B. (2022). Experimental and simulated investigation of the deformation behavior and microstructural evolution of Ti6554 titanium alloy during an electropulsing-assisted microtension process. Materials Science and Engineering: A, 838, 142745. https://doi.org/10.1016/j.msea.2022.142745

Andre, D., Burlet, T., Körkemeyer F., Gerstein, G., Gibson, J. S. K.-L., Sandlöbes-Haut, S., & Korte-Kerzel, S. (2019). Investigation of the electroplastic effect using nanoindentation. Materials and Design, 183, 108153. https://doi.org/10.1016/j.matdes.2019.108153

Omoigiade, O. (2018). Electric current as a steel wire manufacturing tool. Materials Science and Technology, 34(18), 2202 – 2213. https://doi.org/10.1080/02670836.2018.1488435

Sánchez Egea, A. J., González Rojas, H. A., Celentano, D. J., & Jorba Peiró, J. (2016). Mechanical and metallurgical changes on 308L wires drawn by electropulses. Materials and Design, 90, 1159–1169. https://doi.org/10.1016/j.matdes.2015.11.067

Humphreys, F. J. (2001). Review grain and subgrain characterization by electron back scatter diffraction. Journal of Materials Science, 36, 3833-3854. https://doi.org/10.1023/A:1017973432592

Published

2024-05-22

How to Cite

Dmitriev, S. V. ., Morkina, A. Y. ., Tarov, D. V. ., Khalikova, G. R. ., Abdullina, D. U. ., Tatarinov, P. S. ., Tatarinov, V. P. ., Semenov, A. S. ., Naimark, O. B. ., Khokhlov, A. V. ., & Stolyarov, V. V. . (2024). Effect of Repetitive High-Density Current Pulses on Plastic Deformation of Copper Wires under Stepwise Loading. Spectrum of Mechanical Engineering and Operational Research, 1(1), 27-43. https://doi.org/10.31181/smeor1120243