Mechanical Analysis of Sandwich Plates with Lattice Metal Composite Cores

Authors

DOI:

https://doi.org/10.31181/smeor1120244

Keywords:

BCC, Lattice, Homogenised, Multiscale, Sandwich Structure, Finite Element Analysis

Abstract

This study investigates the modal and static behaviour of sandwich panels with lattice core structures, comparing the real cellular solid structures’ response with an equivalent homogenised model. The mechanical model has been described through the Finite Element Method (FEM), and 3D elements with reduced integration have been employed to guarantee an accurate description of skins and the lattice geometry. Different Body Centred Cubic (BCC) cell configurations have been considered: standard metal BCC cell, metal BCC cell with waved struts, standard metal composite BCC cell. Depending on the configuration, the homogenised materials showed isotropic or orthotropic properties. The composite core has been modelled using two different materials, namely an Aluminium matrix with an AlSiC filler, which is enclosed inside the other hence constituting the BCC cell’s strut. A free-vibration and static analysis parametric study has been conducted varying the strut’s diameter, the strut’s waviness and the thickness ratio of the composite struts. For the static analysis, a multiscale approach has been adopted; a first step considering the whole homogenised sandwich panel and a second step comparing the multiscale results of the homogenised model and those of real structure considering a small portion of the panel. Results reveal insights into the effects of core structure parameters on the mechanical response of sandwich panels, aiding in design optimisation and structural enhancement.

Downloads

Download data is not yet available.

References

Rama, G., Marinkovic, D., & Zehn, M. (2018). High Performance 3-Node Shell Element for Linear and Geometrically Nonlinear Analysis of Composite Laminates. Composites Part B: Engineering, 151, 118-126. https://doi.org/10.1016/j.compositesb.2018.06.007

Pei, E., & Kabir, I. (2022). Standardisation in AM. In: Godec, D., Gonzalez-Gutierrez, J., Nordin, A., Pei, E., Ureña Alcázar, J. (eds) A Guide to Additive Manufacturing. Springer Tracts in Additive Manufacturing. Springer, Cham. (pp. 59–73). https://doi.org/10.1007/978-3-031-05863-9_3

Zhu, J., Zhou, H., Wang, C., Zhou, L., Yuan, S., & Zhang, W. (2021). A Review of Topology Optimization for Additive Manufacturing: Status and Challenges. Chinese Journal of Aeronautics, 34(1), 91-110. https://doi.org/10.1016/j.cja.2020.09.020

Liu, J., Gaynor, A. T., Chen, S., Kang, Z., Suresh, K., Takezawa, A., Li, L., Kato, J., Tang, J., Wang, C. C. L., Cheng, L., Liang, X., & To, A. C. (2018). Current and Future Trends in Topology Optimization for Additive Manufacturing. Structural and Multidisciplinary Optimization, 57(6), 2457-2483. https://doi.org/10.1007/s00158-018-1994-3

Berrocal, L., Fernández, R., González, S., Periñán, A., Tudela, S., Vilanova, J., Rubio, L., Martín Márquez, J. M., Guerrero, J., & Lasagni, F. (2019). Topology Optimization and Additive Manufacturing for Aerospace Components. Progress in Additive Manufacturing, 4, 83-95. https://doi.org/10.1007/s40964-018-0061-3

Blakey-Milner, B., Gradl, P., Snedden, G., Brooks, M., Pitot, J., Lopez, E., Leary, M., Berto, F., & du Plessis, A. (2021). Metal Additive Manufacturing in Aerospace: A Review. Materials and Design, 209, 110008. https://doi.org/10.1016/j.matdes.2021.110008

Leal, R., Barreiros, F. M., Alves, L., Romeiro, F., Vasco, J. C., Santos, M., & Marto, C. (2017). Additive Manufacturing Tooling for the Automotive Industry. International Journal of Advanced Manufacturing Technology, 92, 1671-1676. https://doi.org/10.1007/s00170-017-0239-8

Sheoran, A. J., Kumar, H., Arora, P. K., & Moona, G. (2020). Bio-Medical Applications of Additive Manufacturing: A Review. Procedia Manufacturing, 51, 663-670. https://doi.org/10.1016/j.promfg.2020.10.093

Dörfler, K., Dielemans, G., Lachmayer, L., Recker, T., Raatz, A., Lowke, D., & Gerke, M. (2022). Additive Manufacturing Using Mobile Robots: Opportunities and Challenges for Building Construction. Cement and Concrete Research, 158, 106772. https://doi.org/10.1016/j.cemconres.2022.106772

Gibson, L. J. (2003). Cellular Solids. MRS Bulletin, 28(4), 270-274. https://doi.org/10.1557/mrs2003.79

Ashby, M. F. (2006). The Properties of Foams and Lattices. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 364(1838), 15-30. https://doi.org/10.1098/rsta.2005.1678

Fleck, N. A (2004). An Overview of the Mechanical Properties of Foams and Periodic Lattice Materials. Cellular Metals and Polymers, 3-7.

Evans, A. G., Hutchinson, J. W., Fleck, N. A., Ashby, M. F., & Wadley, H. N. G. (2001). The Topological Design of Multifunctional Cellular Metals. Progress in Materials Science, 46(3-4), 309-327. https://doi.org/10.1016/S0079-6425(00)00016-5

Fleck, N. A., Deshpande, V. S., & Ashby, M. F. (2010). Micro-Architectured Materials: Past, Present and Future. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 466(2121), 2495-2516. https://doi.org/10.1098/rspa.2010.0215

Bai, L., Yi, C., Chen, X., Sun, Y., & Zhang, J. (2019). Effective Design of the Graded Strut of BCC Lattice Structure for Improving Mechanical Properties. Materials, 12(13), 2192. https://doi.org/10.3390/ma12132192

Alaña, M., Lopez-Arancibia, A., Pradera-Mallabiabarrena, A., & Ruiz de Galarreta, S. (2019). Analytical Model of the Elastic Behavior of a Modified Face-Centered Cubic Lattice Structure. Journal of the Mechanical Behavior of Biomedical Materials, 98, 357-368. https://doi.org/10.1016/j.jmbbm.2019.05.043

Qi, D., Yu, H., Liu, M., Huang, H., Xu, S., Xia, Y., Qian, G., & Wu, W. (2019). Mechanical Behaviors of SLM Additive Manufactured Octet-Truss and Truncated-Octahedron Lattice Structures with Uniform and Taper Beams. International Journal of Mechanical Sciences, 163, 105091. https://doi.org/10.1016/j.ijmecsci.2019.105091

Pan, C., Han, Y., & Lu, J. (2020). Design and Optimization of Lattice Structures: A Review. Applied Sciences, 10(18), 6374. https://doi.org/10.3390/APP10186374

Tumino, D., Alaimo, A., Mantegna, G., Orlando, C., & Valvano, S. (2023). Mechanical Properties of BCC Lattice Cells with Waved Struts. International Journal on Interactive Design and Manufacturing, 1-14. https://doi.org/10.1007/s12008-023-01359-9

Valvano, S. (2024). Homogenised Properties of Lattice Metal Composite Cell. Facta Universitatis, Series: Mechanical Engineering. https://doi.org/10.22190/FUME240125015V

Lu, H., Deng, W., Luo, K., Chen, Y., Wang, J., & Lu, J. (2023). Tailoring Microstructure of Additively Manufactured Ti6Al4V Titanium Alloy Using Hybrid Additive Manufacturing Technology. Additive Manufacturing, 63, 103416. https://doi.org/10.1016/j.addma.2023.103416

An, L., Guo, Z., Li, Z., Fu, Y., Hu, Y., Huang, Y., Yao, F., Zhou, C., & Ren, S. (2022). Tailoring Thermal Insulation Architectures from Additive Manufacturing. Nature Communications, 13(1), 4309. https://doi.org/10.1038/s41467-022-32027-3

Chen, N., He, C., & Pang, S. (2022). Additive Manufacturing of Energetic Materials: Tailoring Energetic Performance via Printing. Journal of Materials Science and Technology, 127, 29-47. https://doi.org/10.1016/j.jmst.2022.02.047

Pollock, T. M., Clarke, A. J., & Babu, S. S. (2020). Design and Tailoring of Alloys for Additive Manufacturing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 51, 6000-6019. https://doi.org/10.1007/s11661-020-06009-3

Plocher, J., & Panesar, A. (2019). Review on Design and Structural Optimisation in Additive Manufacturing: Towards next-Generation Lightweight Structures. Materials and Design, 183, 108164. https://doi.org/10.1016/j.matdes.2019.108164

Hill, R. (1963). Elastic Properties of Reinforced Solids: Some Theoretical Principles. Journal of the Mechanics and Physics of Solids, 11(5), 357-372. https://doi.org/10.1016/0022-5096(63)90036-X

Gitman, I. M., Askes, H., & Sluys, L. J. (2007). Representative Volume: Existence and Size Determination. Engineering Fracture Mechanics, 74(16), 2518-2534. https://doi.org/10.1016/j.engfracmech.2006.12.021

Borbély, A., Biermann, H., & Hartmann, O. (2001). FE Investigation of the Effect of Particle Distribution on the Uniaxial Stress-Strain Behaviour of Particulate Reinforced Metal-Matrix Composites. Materials Science and Engineering: A, 313(1-2), 34-45. https://doi.org/10.1016/S0921-5093(01)01144-3

Savvas, D., Stefanou, G., & Papadrakakis, M. (2016). Determination of RVE Size for Random Composites with Local Volume Fraction Variation. Computer Methods in Applied Mechanics and Engineering, 305, 340-358. https://doi.org/10.1016/j.cma.2016.03.002

Omairey, S. L., Dunning, P. D., & Sriramula, S. (2019). Development of an ABAQUS Plugin Tool for Periodic RVE Homogenisation. Engineering with Computers, 35, 567-577. https://doi.org/10.1007/s00366-018-0616-4

Ptochos, E., & Labeas, G. (2012). Elastic Modulus and Poisson’s Ratio Determination of Micro-Lattice Cellular Structures by Analytical, Numerical and Homogenisation Methods. Journal of Sandwich Structures and Materials, 14(5), 597-626. https://doi.org/10.1177/1099636212444285

Arabnejad, S., & Pasini, D. (2013). Mechanical Properties of Lattice Materials via Asymptotic Homogenization and Comparison with Alternative Homogenization Methods. International Journal of Mechanical Sciences, 77, 249-262. https://doi.org/10.1016/j.ijmecsci.2013.10.003

Craster, R. V., Kaplunov, J., & Postnova, J. (2010). High-Frequency Asymptotics, Homogenisation and Localisation for Lattices. Quarterly Journal of Mechanics and Applied Mathematics, 63(4), 497-519. https://doi.org/10.1093/qjmam/hbq015

Alaimo, A., Marino, F., & Valvano, S. (2021). BCC Lattice Cell Structural Characterization. Reports in Mechanical Engineering, 2(1), 77-85. https://doi.org/10.31181/rme200102077v77

Mantegna, G., Vindigni, C. R., Valvano, S., Esposito, A., Tumino, D., Alaimo, A., & Orlando, C. (2023). Representative Volume Element Homogenisation Approach to Characterise Additively Manufactured Porous Metals. Mechanics of Advanced Materials and Structures, 30(5), 1073-1082. https://doi.org/10.1080/15376494.2022.2124002

Ha, G. X., Zehn, M. W., Marinkovic, D., & Fragassa, C. (2019). Dealing with Nap-Core Sandwich Composites: How to Predict the Effect of Symmetry. Materials, 12(6), 874. https://doi.org/10.3390/ma12060874

Ha, G. X., Marinkovic, D., & Zehn, M. W. (2019). Parametric Investigations of Mechanical Properties of Nap-Core Sandwich Composites. Composites Part B: Engineering, 161, 427-438. https://doi.org/10.1016/j.compositesb.2018.12.108

Carrera, E., Valvano, S., & Filippi, M. (2018). Classical, Higher-Order, Zig-Zag and Variable Kinematic Shell Elements for the Analysis of Composite Multilayered Structures. European Journal of Mechanics, A/Solids, 72, 97-110. https://doi.org/10.1016/j.euromechsol.2018.04.015

Alaimo, A., Orlando, C., & Valvano, S. (2019). An Alternative Approach for Modal Analysis of Stiffened Thin-Walled Structures with Advanced Plate Elements. European Journal of Mechanics, A/Solids, 77, 103820. https://doi.org/10.1016/j.euromechsol.2019.103820

Hughes, T. J. R., Cohen, M., & Haroun, M. (1978). Reduced and Selective Integration Techniques in the Finite Element Analysis of Plates. Nuclear Engineering and Design, 46(1), 203-222. https://doi.org/10.1016/0029-5493(78)90184-X

Published

2024-05-22

How to Cite

Marino, F. ., Pawlik, M. ., & Valvano, S. . (2024). Mechanical Analysis of Sandwich Plates with Lattice Metal Composite Cores. Spectrum of Mechanical Engineering and Operational Research, 1(1), 44-63. https://doi.org/10.31181/smeor1120244