Designing Surface Profiles with Zero and Finite Adhesion
DOI:
https://doi.org/10.31181/smeor1120246Keywords:
Adhesion, Instabilities, Non-adhesive Surfaces, Controlling AdhesionAbstract
A simple but general analysis of the stability of axis-symmetric adhesive contacts is provided. Adhesion is considered in the JKR-approximation. Depending on the shape of the contacting bodies, various scenarios are possible, including vanishing adhesive force, complete contact as well as transitions between these extremes.
Downloads
References
Johnson, K. L., Kendall, K., & Roberts, A. A. D. (1971). Surface energy and the contact of elastic solids. Proceedings of the royal society of London. A. mathematical and physical sciences, 324(1558), 301-313. https://doi.org/10.1098/rspa.1971.0141
Kendall, K. (1971). The adhesion and surface energy of elastic solids. Journal of Physics D: Applied Physics, 4(8), 1186. https://doi.org/10.1088/0022-3727/4/8/320
Johnson, K. L. (1995). The adhesion of two elastic bodies with slightly wavy surfaces. International Journal of Solids and Structures, 32(3-4), 423-430. https://doi.org/10.1016/0020-7683(94)00111-9
Popov, V. L., & Heß, M. (2015). Method of dimensionality reduction in contact mechanics and friction (pp. 39-41). Berlin (Germany): Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-46160-0
Popov, V. L., & Hess, M. (2014). Method of dimensionality reduction in contact mechanics and friction: a users handbook. I. Axially-symmetric contacts. Facta Universitatis, Series: Mechanical Engineering, 12(1), 1-14.
Heß, M. (2011). Über die exakte Abbildung ausgewählter dreidimensionaler Kontakte auf Systeme mit niedrigerer räumlicher Dimension. Cuvillier Verlag.
Guduru, P. R. (2007). Detachment of a rigid solid from an elastic wavy surface: theory. Journal of the Mechanics and Physics of Solids, 55(3), 445-472. https://doi.org/10.1016/j.jmps.2006.09.004
Carpick, R. W., & Salmeron, M. (1997). Scratching the surface: fundamental investigations of tribology with atomic force microscopy. Chemical reviews, 97(4), 1163-1194. https://doi.org/10.1021/cr960068q
Degrandi-Contraires, E., Poulard, C., Restagno, F., & Léger, L. (2012). Sliding friction at soft micropatterned elastomer interfaces. Faraday discussions, 156(1), 255-265. https://doi.org/10.1039/C2FD00121G
Yashima, S., Romero, V., Wandersman, E., Frétigny, C., Chaudhury, M. K., Chateauminois, A., & Prevost, A. M. (2015). Normal contact and friction of rubber with model randomly rough surfaces. Soft Matter, 11(5), 871-881. https://doi.org/10.1039/c4sm02346c
Sahli, R., Pallares, G., Ducottet, C., Ben Ali, I. E., Al Akhrass, S., Guibert, M., & Scheibert, J. (2018). Evolution of real contact area under shear and the value of static friction of soft materials. Proceedings of the National Academy of Sciences, 115(3), 471-476. https://doi.org/10.1073/pnas.1706434115
Mergel, J. C., Scheibert, J., & Sauer, R. A. (2021). Contact with coupled adhesion and friction: Computational framework, applications, and new insights. Journal of the Mechanics and Physics of Solids, 146, 104194. https://doi.org/10.1016/j.jmps.2020.104194
Lyashenko, I. A., Pham, T. H., & Popov, V. L. (2024). Effect of Indentation Depth on Friction Coefficient in Adhesive Contacts: Experiment and Simulation. Biomimetics, 9(1), 52. https://doi.org/10.3390/biomimetics9010052
Schwarz, U. D., Zwörner, O., Köster, P., & Wiesendanger, R. (1997). Quantitative analysis of the frictional properties of solid materials at low loads. I. Carbon compounds. Physical Review B, 56(11), 6987. https://doi.org/10.1103/PhysRevB.56.6987
Lyashenko, I. A., Pham, T. H., & Popov, V. L. (2024). Controlling the Friction Coefficient and Adhesive Properties of a Contact by Varying the Indenter Geometry. Processes, 12(6), 1209. https://doi.org/10.3390/pr12061209