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This paper presents the effect of an antisymmetric discontinuity in a Winkler 
nonlinear elastic layer and compares it with the case of a double Timoshenko 
beam system without discontinuities. The effects of geometric nonlinearity 
are considered, and the obtained results represent a time-domain analysis. A 
modified p-version finite element method is applied to analyse the vibrations 
of mechanical systems with discontinuities. The main contribution of this 
work is a comparative analysis of a double beam system without 
discontinuities and a double beam system with an antisymmetric 
discontinuity in the Winkler elastic layer. The study demonstrates significant 
deviations in the beam response under a concentrated periodic external force 
when an antisymmetric discontinuity is present. Its qualitative and 
quantitative characteristics are illustrated through time histories, showing 
amplitude variations in the steady-state oscillation regime. Forced vibrations 
in the time domain are analysed using the Newmark direct integration 
method. The cases of deviations in the antisymmetric model are explained, 
highlighting their potential applications in technical practice as well as in the 
field of deformable bodies and structures.  
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1. Introduction 

The study of vibrations and dynamic behavior in coupled beams or plates has been extensively 
explored due to its practical significance in mechanical and civil engineering, particularly as 
continuous vibration absorbers (Rezaei et al. [1], Ari and Faal [2]). Coupled mechanical models also 
play a crucial role in aerospace engineering, sandwich structures, and laminated composite systems 
widely used in engineering practice (Zhang et al. [3], Kennedy et al. [4], Stojanović et al. [5]). Among 
these, elastically connected structures are frequently represented by coupled beam models, 
especially for vibration analysis where the elastic layer functions as a type of foundation or support 
(Hao et al. [6], Zhang et al. [7], Li and Gong [8], Ghomshei [9]). For instance, Bochicchio et al. [10] 
investigated damped transverse vibrations of a double-beam system elastically coupled and 
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subjected to compressive axial loading, with each beam assumed to be elastic, extensible, and 
supported at its ends. Hajarolasvadi and Elbanna [11] examined parallel beams connected at discrete 
points, ensuring deformation and force compatibility, and conducted a parametric study on how 
material properties and connection compliance affect the system's dynamic band structure. Adam 
and Furtmüller [12] analyzed composite beams with bonded layers experiencing interlayer slip during 
moderate vibrations, employing nonlinear strain-displacement relations to improve model accuracy. 
Understanding the dynamic behavior of coupled structures contributes significantly to identifying 
physical phenomena arising from elastic connections, which may vary in their realization (Palmeri 
and Adhikari [13], Xin et al. [14], Zhou et al. [15]). These variations include different models of elastic 
layers, ranging from continuous distributions to cases with localized damage or geometric 
irregularities like discontinuities and curvatures. Although works addressing the dynamic or 
stochastic stability of elastically connected beams exist, they are considerably fewer (Mazur-Śniady 
et al. [16], Mohammadzadeh et al. [17]). Analytical studies, while valuable for understanding 
fundamental dynamic principles, often neglect practical scenarios such as beams with damaged 
elastic layers, discontinuities, or geometric deviations. Recent research underscores the importance 
of discontinuities in coupled structures. For example, Di Lorenzo et al. [18] examined the dynamic 
flexural behavior of layered beams with elastic bonding, incorporating abrupt changes in response 
variables at support and joint points, while Juarez and Ayala [19] developed a variational formulation 
to model beams with localized strain zones representing dislocations and hinges. In another example, 
Srikarun et al. [20] analyzed sandwich beams with functionally graded porous cores under distributed 
loads using advanced deformation theories, while Songsuwan et al. [21] explored the nonlinear 
transient response of similar beams under moving loads, employing Newmark’s time-integration 
method for convergence. Shear effects are also critical in analyzing such systems, as shown by Bitar 
et al. [22], who proposed a Timoshenko beam model with embedded rotation discontinuities to 
simulate plastic hinges and crack openings. The p-version finite element method (FEM) is a powerful 
tool for modeling vibrational behavior in spatially complex systems (Szabó and Babuška [23], Petyt 
[24], Han and Petyt [25], Bardell [26]).  When accounting for geometrically nonlinear effects in shear-
deformable beams and elastic layers with discontinuities, an improved p-version FEM is particularly 
effective. As demonstrated in Stojanović et al. [27], this method captures the altered vibration 
dynamics introduced by discontinuities. Timoshenko beam theory, known for incorporating shear 
deformation and rotary inertia, remains a key framework for studying coupled systems and beams 
on elastic foundations. De Rosa [28] analyzed the vibrations of a shear-deformable beam on a 
Pasternak foundation, deriving frequency equations for various boundary conditions. Similarly, Ariaei 
et al. [29] investigated the dynamic response of multiple elastically connected beams, using modal 
analysis to decouple and solve the governing equations. 

This paper focuses on a specific class of coupled beam models, examining the effect of a fully 
antisymmetric discontinuity in the elastic layer connecting two beams. The analysis includes 
transverse shear effects, geometric nonlinearity, and provides a comparison with a nonlinear double-
beam system model that does not contain a discontinuity in the Winkler elastic layer. The primary 
objective is to investigate the impact of a fully antisymmetric discontinuity in the elastic layer on 
natural frequencies and nonlinear time-domain responses. The study analyzes steady-state regimes 
under harmonic excitation by a concentrated periodic force acting at the midpoint of the upper 
beam. The equations of motion are derived using the principle of virtual work and solved using the 
Newmark method. Model validation is performed by comparing the results with those obtained from 
ANSYS software [30]. 
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2. Mathematical model   
The Timoshenko beam system considered in this study features a rectangular cross-section. The 

analysis incorporates the effects of rotary inertia and shear deformation to model a coupled beam-
beam or beam-arch configuration (Figure 1), which is elastically joined by a nonlinear layer exhibiting 
a discontinuity. To account for geometric nonlinearity arising from large deflections, the Timoshenko 
beam theory is utilized alongside the von Kármán plate theory adapted for beams. Additionally, the 
study examines a viscoelastically connected beam system with an asymmetric discontinuity and 
compares it to a classical double-beam configuration. 

 
 

Fig. 1. Timoshenko geometrically non-linear beam system:  
a) with asymmetric discontinuity; b) double-beam system 

 
The dimensions of the beams are characterized by their length 𝐿, width 𝑏, and thickness ℎ. The 

discontinuity within the Winkler layer is specified through the parameters 𝑙1 and 𝑙2 (as illustrated in 
Figure 1). The viscoelastic layer is described by its linear stiffness modulus 𝑘𝐿, nonlinear stiffness 
modulus 𝑘𝑁𝐿, and damping coefficient 𝛽. Both the beams and the arch are assumed to be elastic and 
isotropic materials. The in-plane displacements 𝑢1, 𝑢2, along with the transverse displacements 𝑤1 
and 𝑤2 at specific points of the arch and beam, are defined as follows 

 

𝑢𝑖(𝑥, 𝑧, 𝑡) = 𝑢𝑖
0(𝑥, 𝑡) + 𝑧𝜃𝑖

0(𝑥, 𝑡),     𝑤𝑖(𝑥, 𝑧, 𝑡) = 𝑤𝑖
0(𝑥, 𝑡),   𝑖 = 1,2       (1) 

 



Spectrum of Mechanical Engineering and Operational Research 

Volume 2, Issue 1 (2025) 47-58 

50 
 

 

In this context, 𝑤 represents the displacement along the 𝑧 -axis. A concentrated harmonic force 
is applied at the midpoint of the upper beam. The longitudinal strain at 𝑧 = 0, 𝜀𝑥1

0 , can be expressed 
as follows 

 

𝜀𝑥1
0 =

𝜕𝑢1
0(𝑥,𝑡)

𝜕𝑥
              (2) 

 

A von Kármán framework is utilized in this study, incorporating the primary geometric 
nonlinearities. Accordingly, the longitudinal and shear strain expressions for both the curved arch 
and the straight beam are formulated as follows 

 

𝜀𝑥1 = 𝜀𝑥1
0 +

1

2
(
𝜕𝑤1

0

𝜕𝑥
)
2

+ 𝑧
𝜕𝜃1

0

𝜕𝑥
, 𝜀𝑥2 =

𝜕𝑢2
0(𝑥,𝑡)

𝜕𝑥
+
1

2
(
𝜕𝑤2

0

𝜕𝑥
)
2

+ 𝑧
𝜕𝜃2

0

𝜕𝑥
,       (3) 

 

𝛾𝑥𝑧1 =
𝜕𝑤1

0

𝜕𝑥
+ 𝜃1

0,   𝛾𝑥𝑧2 =
𝜕𝑤2

0

𝜕𝑥
+ 𝜃2

0           (4) 

 
The governing equations for materials exhibiting linear elasticity and isotropic properties can be 

expressed as follows 
 

σ = Dε ⇔ {

𝜎𝑥1
𝜏𝑥𝑧1
𝜎𝑥2
𝜏𝑥𝑧2

} = [

𝐸1 0 0 0
0 𝜆1𝐺1 0 0
0 0 𝐸2 0
0 0 0 𝜆2𝐺2

] {

𝜖𝑥1
𝛾𝑥𝑧1
𝜀𝑥2
𝛾𝑥𝑧2

}        (5) 

 
In this context, 𝐸1 and 𝐸2 denote the Young's moduli corresponding to the lower and upper 

beams, respectively, while 𝐺1 and 𝐺2 represent their respective shear moduli. The parameters 𝝀𝟏 
and 𝝀𝟐 are the shear correction factors, 𝐃 is the matrix of elastic constants, and 𝛔 and 𝛆 are vectors 
containing the non-zero components of stress and strain, respectively. The shear moduli are defined 
as 𝐸𝑖/(2(1 + 𝜈𝑖)), where 𝜈𝑖 is the Poisson's ratio for the material. In the p-version finite element 
method, the displacements of the mid-surface for each element are represented using the following 
formulation 

 

{
  
 

  
 
𝑢1
0(𝜉, 𝑡)

𝑤1
0(𝜉, 𝑡)

𝜃1
0(𝜉, 𝑡)

𝑢2
0(𝜉, 𝑡)

𝑤2
0(𝜉, 𝑡)

𝜃2
0(𝜉, 𝑡)}

  
 

  
 

=  diag {[𝑁𝑢1]T, [𝑁𝑤1]T, [𝑁𝜃1]
T
, [𝑁𝑢2]T, [𝑁𝑤2]T, [𝑁𝜃2]

T
}

{
 
 

 
 
q𝑢1(𝑡)
q𝑤1(𝑡)
q𝜃1(𝑡)
q𝑢2(𝑡)
q𝑤2(𝑡)

q𝜃2(𝑡)}
 
 

 
 

      (6) 

 

By utilizing the principle of virtual work, expressed as {
𝛿𝑊𝐢𝐧(1) + 𝛿𝑊𝐕(1) + 𝛿𝑊𝐞𝐱(1)

𝛿𝑊𝐢𝐧(2) + 𝛿𝑊𝐕(2) + 𝛿𝑊𝐞𝐱(2)
} = {

0
0
}, the 

equations of motion for a geometrically nonlinear coupled system are formulated and can be 
expressed in the following manner 
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[
 
 
 
 
 
M11 0 0 0 0 0
0 M12 0 0 0 0
0 0 M13 0 0 0
0 0 0 M21 0 0
0 0 0 0 M22 0
0 0 0 0 0 M23]

 
 
 
 
 

{
 
 

 
 
q̈𝑢1
q̈𝑤1
q̈θ1
q̈u2
q̈𝑤2
q̈θ2}

 
 

 
 

+ 

+𝛼̃

(

 
 
 
 

[
 
 
 
 
 
 
K11 0 0 0 0 0

0 K22(𝑠) + K22(𝛾11) + K22(𝑘𝐿)
𝑑𝑖𝑠𝑐. K23(𝛾12) 0 −K22(𝑘𝐿)

𝑑𝑖𝑠𝑐. 0

0 K32(𝛾21) K33(𝛾22) + K33(0) 0 0 0

0 0 0 K44 0 0

0 −K22(𝑘𝐿)
𝑑𝑖𝑠𝑐. 0 0 K55(𝛾11) + K22(𝑘𝐿)

𝑑𝑖𝑠𝑐. K56(𝛾12)
0 0 0 0 K65(𝛾21) K66(𝛾22) + K66(0)]

 
 
 
 
 
 

)

 
 
 
 

{
 
 

 
 
q̇𝑢1
q̇𝑤1
q̇θ1
q̇u2
q̇𝑤2
q̇θ2}

 
 

 
 

 

 

+𝛽

(

 
 
 

[
 
 
 
 
 
M11 0 0 0 0 0
0 M12 0 0 0 0
0 0 M13 0 0 0
0 0 0 M21 0 0
0 0 0 0 M22 0
0 0 0 0 0 M23]

 
 
 
 
 

)

 
 
 

{
 
 

 
 
q̇𝑢1
q̇𝑤1
q̇θ1
q̇u2
q̇𝑤2
q̇θ2}

 
 

 
 

 

+

[
 
 
 
 
 
 
K11 0 0 0 0 0

0 K22(𝑠) + K22(𝛾11) + K22(𝑘𝐿)
𝑑𝑖𝑠𝑐. K23(𝛾12) 0 −K22(𝑘𝐿)

𝑑𝑖𝑠𝑐. 0

0 K32(𝛾21) K33(𝛾22) + K33(0) 0 0 0

0 0 0 K44 0 0

0 −K22(𝑘𝐿)
𝑑𝑖𝑠𝑐. 0 0 K55(𝛾11) + K22(𝑘𝐿)

𝑑𝑖𝑠𝑐. K56(𝛾12)
0 0 0 0 K65(𝛾21) K66(𝛾22) + K66(0)]

 
 
 
 
 
 

{
 
 

 
 
q𝑢1
q𝑤1
qθ1
qu2
q𝑤2
qθ2}

 
 

 
 

 

+

[
 
 
 
 
 
 

0 K12(𝑁𝐿) 0 0 0 0

K21(𝑁𝐿) K22(𝑁𝐿) + K22(𝑘𝑁𝐿)
𝑑𝑖𝑠𝑐. 0 0 −K24(𝑘𝑁𝐿)

𝑑𝑖𝑠𝑐. 0

0 0 0 0 0 0
0 0 0 0 K45(𝑁𝐿) 0

0 −K22(𝑘𝑁𝐿)
𝑑𝑖𝑠𝑐. 0 K54(𝑁𝐿) K55(𝑁𝐿) + K24(𝑘𝑁𝐿)

𝑑𝑖𝑠𝑐. 0

0 0 0 0 0 0]
 
 
 
 
 
 

{
 
 

 
 
q𝑢1
q𝑤1
qθ1
qu2
q𝑤2
qθ2}

 
 

 
 

 =

{
 
 

 
 
0
0
0
0
𝐹𝑤2
0 }
 
 

 
 

     (7) 

 

In the system, the vector {0, 0, 0, 0, 𝐅𝑤2, 0} represents the generalized external forces. The 
matrices 𝐌∗∗, 𝐊∗∗, and 𝐊∗∗(𝑟,γ,𝑘𝐿) are constant and contribute to the linear terms within the equations 

of motion. Quadratic nonlinear terms arise from the solution-dependent matrices 
𝐊12(𝑁𝐿), 𝐊21(𝑁𝐿), 𝐊45(𝑁𝐿) and 𝐊54(𝑁𝐿). Cubic nonlinearities are represented by the matrices 𝐊22(𝑁𝐿) 

and 𝐊55(𝑁𝐿), which exhibit quadratic dependency on the solution. Additionally, the matrices 𝐊22(𝑘𝑁𝐿)
𝑑𝑖𝑠𝑐.  

and 𝐊24(𝑘𝑁𝐿)
𝑑𝑖𝑠𝑐.  depend cubically on the solution, highlighting the nonlinear characteristics of the 

system. Furthermore, the influence of the elastic layer's stiffness, including the discontinuity, is 

described by the matrices 𝐊22(𝑘𝐿)
𝑑𝑖𝑠𝑐. , 𝐊22(𝑘𝑁𝐿)

𝑑𝑖𝑠𝑐.  and 𝐊24(𝑘𝑁𝐿)
𝑑𝑖𝑠𝑐. . Damping is modeled using Rayleigh 

proportional damping with coefficients 𝛼̃ and ̃. The equations of motion are reformulated into a 
more compact notation for efficiency in further analysis 

 

Mq̈(𝑡) + 𝛼̃(K)q̇(𝑡) + ̃(M)q̇(𝑡) + (K + Kn(q(𝑡))) q(𝑡) = F(𝑡)      (8) 
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Each displacement component corresponds to a distinct set of shape functions. The transverse 
displacement is represented using a combination of Legendre polynomials, expressed in Rodrigues' 
form, and four Hermite cubic functions. Among these, only one Hermite cubic function at the ends 
of each element exhibits a non-zero value for either displacement or rotation, while the higher-order 
Legendre polynomials have zero amplitudes and slopes at 𝜉 = ±1. For longitudinal displacements 
and rotations, a specific set of polynomials, referred to as the g-set, is used alongside linear functions. 
These g-functions have a zero value at the boundaries, but their slopes are non-zero.  

In the numerical simulation involving time-domain analysis, the generalized external force vector, 
𝐅(𝑡) = {0, 0, 0, 0, 𝐅𝑤2, 0}, is defined as a time-dependent function representing the harmonic 
excitation applied transversely to the upper beam. This explicit time dependency highlights the non-
autonomous nature of the systems under study, which are subjected to harmonic forces. The 
scenarios analyzed include clamped-clamped double beam system with and without asymmetric 
discontinuity in the Winkler layer, and their dynamic behavior is thoroughly examined. 

 
2.1 The effect of an asymmetric discontinuity in the Winkler layer on the natural frequencies 

The p-version FEM approach is utilized to evaluate the comparison of results between symmetric 
and asymmetric beam-beam systems with clamped-clamped boundary conditions. This analysis 
incorporates additional variations in geometric and material characteristics of the system, which are 
defined as follows.  
 

𝐿𝑖 = 10 m, 𝐴𝑖 = 5 × 10−2 m2, 𝜌𝑖 = 2 × 10
3 kgm−3, 𝑘 = 2 × 105

N

  m2 , 𝐸𝑖 = 1 × 1010 Nm−2, 
 

 𝐼𝑖 = 4 × 10−4m4,   𝜆𝑖 =
5+5𝜈

6+5𝜈
, 𝜈𝑖 = 0.34, 𝑖 = 1, 2.         (9) 

 
This section presents a set of frequencies illustrating the variation of the second coupled 

frequency depending on the existence of an asymmetric Winkler layer. The tabular representation 
provides insights into the reduction of the coupled frequency when the asymmetric layer is included 
in the model. Within the framework of different models shown in Figures 1a and 1b, corresponding 
respectively to cases a and b in the table, it is evident that the asymmetry of the Winkler layer plays 
a significant role in altering the natural frequencies. However, this is insufficient for a more detailed 
analysis of the dynamic behavior of the entire system, as well as its maximum deformation in the 
steady-state regime of forced oscillations, especially when all nonlinear effects are considered. The 
tabular data is provided to highlight the changes in the coupled frequency and its quantitative 
characteristics. 

 
Table 1 
Natural frequencies (rad/s) of a clamped-clamped double-beam  
system with asymmetric layer  
(a) and classical double-beam system  
(b) number of used shape functions: 𝑝(𝑔, 𝑓, 𝜃) = 6. 

Case Freq. 
Mode number 

n=1 n=2 

a 
𝜔11 44.4678 121.627 
𝜔12 58.4913 136.519 

b 
𝜔11 44.4678 121.627 
𝜔12 50.1296 127.478 
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3. Geometrically nonlinear vibrations in the time domain 
This section explores the influence of forced nonlinear vibrations using numerical simulations 

conducted in the time domain. The equations of motion were solved utilizing the Newmark method. 
The excitation force was modeled as a harmonic function of time, expressed as 𝑓(𝑡) = 𝐹 cos(𝜔𝑒 𝑡), 
where 𝜔𝑒 denotes the excitation frequency and 𝐹 represents the amplitude. A summary of results 
from various scenarios, as outlined in Table 1, is provided. The analysis considers an excitation 
amplitude of (𝐹 = 50 ∙ 103N) and a frequency (𝜔 = 0.9𝜔ℓ1), applied at the mid-span of the system. 
Initially, experimental results from Wolfe [31] were compared with the numerical results from 
Stojanović et al. [27] to validate the accuracy of the computational approach. This comparison was 
performed using identical geometric and material properties for the beam. Subsequently, the 
mechanical system incorporating an elastic layer, consistent with (Hao [6], Stojanović et al. [32]), was 
further analyzed, including the influence of an asymmetric Winkler layer. Time histories and phase 
plots for cases a and b are shown in Figures 2 and 3, respectively. Figure 4 illustrates the deformation 
shapes of the beams under maximum amplitudes at various points during the steady-state regime of 
forced nonlinear vibrations.  

 

 
 

Fig. 2. Comparison of the time histories at the midpoints 
of the double-beam system with an asymmetrical 

Winkler layer (Case a) and the classical double-beam 
system (Case b). 
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Fig. 3. Comparison of the phase plots at the 
midpoints of the double-beam system with an 
asymmetrical Winkler layer (Case a) and the 

classical double-beam system (Case b). 

 
Figure 2 demonstrates that the presence of an asymmetric Winkler layer significantly amplifies 

the vibration amplitudes of both beams. Specifically, the asymmetric layer leads to a more 
pronounced increase in the upper beam’s amplitudes. However, the difference becomes even more 
notable when comparing the maximum amplitudes of the lower beam with and without the 
asymmetric layer (blue line, case a, versus black line, case b). This observation suggests that, despite 
the applied force being on the upper beam, the most significant disparity in steady-state amplitudes 
occurs on the lower beam. This finding is particularly relevant and can be applied to the design of 
various asymmetric structural configurations. 

Figure 3 presents phase plots that include the velocities of the beam midpoints. The key 
observation here is the increase in velocity caused by the presence of the asymmetric Winkler layer. 
The trends in velocity changes closely align with those in amplitude changes. The phase plots reveal 
a much greater velocity difference at the midpoint of the lower beam when the asymmetric Winkler 
layer is present compared to the case without it. Conversely, the difference in velocity changes for 
the upper beam is less pronounced.  

Figure 4 provides a comparative visualization of the deformation shapes for cases a and b, 
highlighting the maximum amplitudes at all points along the beams. Several conclusions can be 
drawn from these observations, which could guide further analyses of similar asymmetric coupled 
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structures. The first conclusion pertains to the asymmetry of maximum deformation in the upper 
beam, which shifts toward the side lacking the Winkler layer. At this position, the deformation shows 
the largest deviation compared to the scenario where the Winkler layer is continuous (case bb). For 
the lower beam, the behavior is even more intriguing. The presence of an asymmetric Winkler layer 
induces a local deformation maximum on the opposite side of the beam, relative to the absence of 
the layer. Additionally, the lower beam exhibits significantly greater differences in maximum 
deformations across all points when comparing cases with and without the asymmetric Winkler layer. 
These findings underscore the pronounced impact of the asymmetric Winkler layer on deformation 
asymmetry in the lower beam during the steady-state regime of forced vibrations. Furthermore, the 
results emphasize that such asymmetries could serve as critical factors in the design and stability of 
coupled mechanical systems. 
 

 
 

Fig. 4. Comparison of the maximum deflections 
during forced nonlinear vibrations between the 

double-beam system with an asymmetrical 
Winkler layer (Case a) and the classical double-

beam system (Case b) 
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4. Conclusions 
This study highlights the significant impact of an antisymmetric discontinuity in a Winkler 

nonlinear elastic layer on the dynamic behavior of a double Timoshenko beam system. Incorporating 
geometric nonlinearity and utilizing a modified p-version finite element method, the research 
provides a detailed time-domain analysis of forced vibrations in systems with discontinuities. The 
findings reveal that the asymmetric Winkler layer amplifies vibration amplitudes in both beams, with 
the upper beam experiencing more pronounced increases, while the lower beam exhibits the 
greatest disparity in steady-state amplitudes between cases with and without the layer. Phase plot 
analyses indicate that the asymmetric layer significantly increases velocity variations, particularly in 
the lower beam, aligning with trends in amplitude changes and underscoring its influence on dynamic 
stability. Deformation shapes further emphasize the asymmetry caused by the Winkler layer, with 
the upper beam’s maximum deformation shifting toward the side without the layer and the lower 
beam showing localized deformation maxima. These results underscore the critical role of the 
discontinuity in altering oscillatory behavior, deformation, and velocity profiles. Practical implications 
include the potential use of such discontinuities to optimize dynamic responses in coupled structures, 
offering insights for stabilizing and controlling mechanical systems in technical applications. This work 
provides a foundation for advancing the design of asymmetric elastic layers in deformable bodies and 
coupled systems. 
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