The Effect of a Fully Asymmetric Discontinuity in the Elastic Layer of a Geometrically Nonlinear Double-Beam Coupled Mechanical System
DOI:
https://doi.org/10.31181/smeor21202529Keywords:
p-version of FEM, Nonlinear vibrations, Coupled beam system, Asymmetric layer, Newmark methodAbstract
This paper presents the effect of an antisymmetric discontinuity in a Winkler nonlinear elastic layer and compares it with the case of a double Timoshenko beam system without discontinuities. The effects of geometric nonlinearity are considered, and the obtained results represent a time-domain analysis. A modified p-version finite element method is applied to analyse the vibrations of mechanical systems with discontinuities. The main contribution of this work is a comparative analysis of a double beam system without discontinuities and a double beam system with an antisymmetric discontinuity in the Winkler elastic layer. The study demonstrates significant deviations in the beam response under a concentrated periodic external force when an antisymmetric discontinuity is present. Its qualitative and quantitative characteristics are illustrated through time histories, showing amplitude variations in the steady-state oscillation regime. Forced vibrations in the time domain are analysed using the Newmark direct integration method. The cases of deviations in the antisymmetric model are explained, highlighting their potential applications in technical practice as well as in the field of deformable bodies and structures.
Downloads
References
Rezaei, M., Talebitooti, R., & Liao, W.-H. (2022). Concurrent energy harvesting and vibration suppression utilizing PZT-based dynamic vibration absorber. Archive of Applied Mechanics, 92, pp. 363-382. https://doi.org/10.1007/s00419-021-02063-4.
Ari, M., & Faal, M. (2019). Passive vibration suppression of plate using multiple optimal dynamic vibration absorbers. Archive of Applied Mechanics, 90, pp. 235–274. https://doi.org/10.1007/s00419-019-01607-z.
Zhang, S. Q., Gao, Y. S., Pu, H. Y., Wang, M., Ding, J. H., & Sun, Y. (2021). Numerical modeling for viscoelastic sandwich smart structures bonded with piezoelectric materials. Composite Structures, 278, 114703. https://doi.org/10.1016/j.compstruct.2021.114703.
Kennedy, D., Cheng, R. K. H., Wei, S., & Alcazar Arevalo, F. J. (2016). Equivalent layered models for functionally graded plates. Computers & Structures, 174, pp. 113-121. https://doi.org/10.1016/j.compstruc.2015.09.009.
Stojanović, V., Petković, M. D., & Deng, J. (2019). Stability of parametric vibrations of an isolated symmetric cross-ply laminated plate. Composites Part B: Engineering, 167, pp. 631-642. https://doi.org/10.1016/j.compositesb.2019.02.041.
Hao, N., Zhu, L., Wu, Z., & Ke, L. (2023) Softening-spring nonlinearity in large amplitude vibration of unsymmetric double-layer lattice truss core sandwich beams. Thin-Walled Structures, 182 (Part A), 110164. https://doi.org/10.1016/j.tws.2022.110164.
Zhang, Q. Y., Lu, Y., Wang, L. S., & Liu, X. (2010) Vibration and buckling of a double-beam system under compressive axial loading. Journal of Sound and Vibration, 318, pp. 341-352. https://doi.org/10.1016/j.jsv.2008.03.055.
Li, X. Y., & Gong, J. (2022). Free and forced vibration analysis of general multiple beam systems. International Journal of Mechanical Sciences, 235, 107716. https://doi.org/10.1016/j.ijmecsci.2022.107716.
Ghomshei, M. M. (2020). A numerical study on the thermal buckling of variable thickness Mindlin circular FGM plate on a two-parameter foundation. Mechanics Research Communications, 108, pp. 103577. https://doi.org/10.1016/j.mechrescom.2020.103577.
Bochicchio, I., Giorgi, C., & Vuk, E. (2016). Buckling and nonlinear dynamics of elastically coupled double-beam systems. International Journal of Non-Linear Mechanics, 85, pp. 161–173. https://doi.org/10.1016/j.ijnonlinmec.2016.06.009.
Hajarolasvadi, S., & Elbanna, A. E. (2019). Dynamics of metamaterial beams consisting of periodically-coupled parallel flexural elements: a theoretical study. Journal of Physics D: Applied Physics, 52, pp. 315101. http://dx.doi.org/10.1088/1361-6463/ab1f9e.
Adam, C., & Furtmüller, T. (2020). Flexural vibrations of geometrically nonlinear composite beams with interlayer slip. Acta Mechanica, 231, pp. 251–271. https://doi.org/10.1007/s00707-019-02528-2.
Palmeri, A., & Adhikari, S. (2011) A Galerkin-type state-space approach for transverse vibrations of slender double-beam systems with viscoelastic inner layer. Journal of Sound and Vibration, 330(26), pp. 6372-6386. http://dx.doi.org/10.1016/j.jsv.2011.07.037.
Xin, Y., Cui, C., Liu, H., Wang, B., Xu, C., Xu, Li., & Fu, G. (2024). Dynamic analysis for horizontal vibration of piles in layered Pasternak soils considering secondary ground waves. Soil Dynamics and Earthquake Engineering, 187, 109026. https://doi.org/10.1016/j.soildyn.2024.109026.
Zhou, Y. R., Yan, X.B., Wang, M.X., Liu, Y.C., & Wen, P.H. (2024). Dynamic fundamental solution of dipole for Kirchhoff plate on Winkler-Pasternak foundation. Computers & Structures, 304, 2024, 107498. https://doi.org/10.1016/j.soildyn.2024.109026.
Mazur-Śniady, K., Misiurek, K., Szyłko-Bigus, O., & Śniady, P. (2013). Fuzzy Stochastic Vibrations of Double-Beam Complex System as Model Sandwich Beam with Uncertain Parameters. ISRN Applied Mathematics, 2013, pp. 1–12. http://dx.doi.org/10.1155/2013/340145.
Mohammadzadeh, S., Esmaeili, M., & Mehrali, M. (2013). Dynamic response of double beam rested on stochastic foundation under harmonic moving load. International Journal for Numerical and Analytical Methods in Geomechanics, 38(6), pp. 572–592. https://doi.org/10.1002/nag.2227.
Di Lorenzo, S., Adam, C., Burlon, A., Failla, G., & Pirrotta, A. (2018). Flexural vibrations of discontinuous layered elastically bonded beams. Composites Part B: Engineering, 135, pp. 175–188. https://doi.org/10.1016/j.compositesb.2017.09.059.
Juarez, G., & Ayala, A. G. (2012). Finite element variational formulation for beams with discontinuities. Finite Elements in Analysis and Design, 54, pp. 37–47. https://doi.org/10.1016/j.finel.2012.01.004.
Srikarun, B., Songsuwan, W., & Wattanasakulpong, N. (2021). Linear and nonlinear static bending of sandwich beams with functionally graded porous core under different distributed loads. Composite Structures, 276, 114538. https://doi.org/10.1016/j.compstruct.2021.114538.
Songsuwan, W., Wattanasakulpong, N., & Kumar, S. (2023). Nonlinear transient response of sandwich beams with functionally graded porous core under moving load. Engineering Analysis with Boundary Elements, 155, pp. 11–24.
Bitar, I., Kotronis, P., Benkemoun, N., & Grange, S. (2018). A generalized Timoshenko beam with embedded rotation discontinuity. Finite Elements in Analysis and Design, 150, pp. 34–50. https://doi.org/10.1016/j.finel.2018.07.002.
Szabó, B., & Babuška, I. (1991). Finite Element Analysis. John Wiley & Sons, New York. https://doi.org/10.2307/2153181.
Petyt, M. (1990). Introduction to Finite Element Vibration Analysis. Cambridge University Press. https://doi.org/10.1017/CBO9780511761195.
Han, W., & Petyt, M. (1996). Linear vibration analysis of laminated rectangular plates using the hierarchical finite element method, Part 1: free vibration analysis. Computers & Structures, 61, pp. 705–712. https://doi.org/10.1016/0045-7949(96)00213-1.
Bardell, N. S. (1989). The application of symbolic computing to the hierarchical finite element method. International Journal for Numerical Methods in Engineering, 28, pp. 1181–1204. https://doi.org/10.1002/nme.1620280513.
Stojanović, V., Ribeiro, P., & Stoykov, S. (2013). Non-linear vibration of Timoshenko damaged beams by a new p-version finite element method. Computers & Structures, 120, pp. 107–119. https://doi.org/10.1016/j.compstruc.2013.02.012.
De Rosa, M. A. (1995). Free vibrations of Timoshenko beams on two-parameter elastic foundation. Computers & Structures, 57, pp. 151–156. https://doi.org/10.1016/0045-7949(94)00594-S.
Ariaei, A., Ziaei-Rad, S., & Ghayour, M. (2010). Transverse vibration of a multiple-Timoshenko beam system with intermediate elastic connections due to a moving load. Archive of Applied Mechanics, 81(3), pp. 263–281. https://doi.org/10.1007/s00419-010-0410-2.
ANSYS Workbench User’s Guide, 2009. file:///C:/Users/Dunja/Downloads/WorkbenchUsersGuide.pdf.
Wolfe, H. (1995). An experimental investigation of nonlinear behaviour of beams and plates excited to high levels of dynamic response. PhD thesis, University of Southampton. Southampton.
Stojanović, V., Petković, M. D., & Milić, D. (2020). Nonlinear vibrations of a coupled beam-arch bridge system. Journal of Sound and Vibration, vol. 464, 115000. https://doi.org/10.1016/j.jsv.2019.115000.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Scientific Oasis

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.