An Introductory Review of Carbon Nanotube-Based Sensors: Mechanisms, Fabrication, and Applications

Authors

DOI:

https://doi.org/10.31181/smeor46

Keywords:

Carbon nanotubes, Flexible sensors, Gas detection, Strain response, Fabrication, Wearable devices

Abstract

Carbon nanotubes (CNTs) have attracted significant attention in sensor technologies due to their exceptional electrical conductivity, mechanical flexibility, and high surface reactivity. This review provides an in-depth overview of CNT-based sensors, covering their working principles, fabrication techniques, and major application areas. We begin by exploring the fundamental mechanisms underlying CNT sensing behavior—such as piezoresistivity, tunneling effects, and percolation conduction—followed by a discussion of common fabrication methods, including solution processing, printing, and composite integration. Key applications are highlighted, including wearable strain sensors for human motion detection, gas sensors for environmental monitoring, and self-sensing materials for structural health diagnostics. While CNT-based sensors offer clear advantages in sensitivity and form factor versatility, challenges such as material uniformity, signal stability, and long-term durability remain. We conclude by discussing future directions and strategies to overcome these limitations, aiming to guide the development of robust, scalable CNT-enabled sensing systems. This review serves as a timely resource for researchers and engineers seeking to understand and advance CNT-based sensor technologies.

Downloads

Download data is not yet available.

References

Demidenko, N. A., Kuksin, A. V., Molodykh, V. V., Pyankov, E. S., Ichkitidze, L. P., Zaborova, V. A., Tsymbal, A. A., Tkachenko, S. A., Shafaei, H., Diachkova, E., & Gerasimenko, A. Y. (2022). Flexible Strain-Sensitive Silicone-CNT Sensor for Human Motion Detection. Bioengineering, 9(1), 36. https://doi.org/10.3390/bioengineering9010036

Kim, T., Cho, M., & Yu, K. J. (2018). Flexible and Stretchable Bio-Integrated Electronics Based on Carbon Nanotube and Graphene. Materials, 11(7), 1163. https://doi.org/10.3390/ma11071163

Seo, Y., Heebo, H., Young, C. J., Mirine, L., Sozan, D., Paolo, M., Christian, M., Gwang, Y. T., & and Hwang, B. (2022). Highly Reliable Yarn-Type Supercapacitor Using Conductive Silk Yarns with Multilayered Active Materials. Journal of Natural Fibers, 19(3), 835-846. https://doi.org/10.1080/15440478.2021.1993509

Kim, H., Qaiser, N., & Hwang, B. (2023). Electro-mechanical response of stretchable PDMS composites with a hybrid filler system. Facta Universitatis Series Mechanical Engineering, 21(1), 51-61. https://doi.org/10.22190/fume221205002k

Ha, H., Qaiser, N., Yun, T. G., Cheong, J. Y., Lim, S., & Hwang, B. (2023). Sensing mechanism and application of mechanical strain sensor: a mini-review. Facta Universitatis Series Mechanical Engineering, 21(4), 751-772. https://doi.org/10.22190/fume230925043h

Pandhi, T., Chandnani, A., Subbaraman, H., & Estrada, D. (2020). A Review of Inkjet Printed Graphene and Carbon Nanotubes Based Gas Sensors. Sensors, 20(19), 5642. https://doi.org/10.3390/s20195642

Kim, H., Kim, G., Kang, J. H., Oh, M. J., Qaiser, N., & Hwang, B. (2024). Intrinsically conductive and highly stretchable liquid metal/carbon nanotube/elastomer composites for strain sensing and electromagnetic wave absorption. Advanced Composites and Hybrid Materials, 8(1), 14. https://doi.org/10.1007/s42114-024-01093-0

Khalid, H. R., Jang, D., Abbas, N., Haider, M. S., Bukhari, S. N. A., Mirza, C. R., Elboughdiri, N., & Ahmad, F. (2022). Electrical Stability and Piezoresistive Sensing Performance of High Strain-Range Ultra-Stretchable CNT-Embedded Sensors. Polymers, 14(7), 1366. https://doi.org/10.3390/polym14071366

Suryaprabha, T., Hong, S., Pham, T., Seo, M.-Y., Kim, T.-W., & Hwang, B. (2025). Superhydrophobic, self-cleaning MWCNT/Ferrite/Ni Chain/PDMS-coated cotton fabrics for wearable applications: Electromagnetic shielding and underwater alerts. Chemical Engineering Journal, 507, 160378. https://doi.org/10.1016/j.cej.2025.160378

Suryaprabha, T., Kiruthika, T., Selvamurugan, P., Sethuraman, M. G., Ha, H., Choi, Z., Wang, E., & Hwang, B. (2024). Recycling primary batteries into advanced graphene flake-based multifunctional smart textiles for energy storage, strain sensing, electromagnetic interference shielding, antibacterial, and deicing applications. Journal of Cleaner Production, 479, 144020. https://doi.org/10.1016/j.jclepro.2024.144020

Nasture, A.-M., Ionete, E. I., Lungu, F. A., Spiridon, S. I., & Patularu, L. G. (2022). Water Quality Carbon Nanotube-Based Sensors Technological Barriers and Late Research Trends: A Bibliometric Analysis. Chemosensors, 10(5), 161. https://doi.org/10.3390/chemosensors10050161

Cho, G., Azzouzi, S., Zucchi, G., & Lebental, B. (2022). Electrical and Electrochemical Sensors Based on Carbon Nanotubes for the Monitoring of Chemicals in Water—A Review. Sensors, 22(1), 218. https://doi.org/10.3390/s22010218

Kanoun, O., Bouhamed, A., Ramalingame, R., Bautista-Quijano, J. R., Rajendran, D., & Al-Hamry, A. (2021). Review on Conductive Polymer/CNTs Nanocomposites Based Flexible and Stretchable Strain and Pressure Sensors. Sensors, 21(2), 341. https://doi.org/10.3390/s21020341

Ferrier, D. C., & Honeychurch, K. C. (2021). Carbon Nanotube (CNT)-Based Biosensors. Biosensors, 11(12), 486. https://doi.org/10.3390/bios11120486

Noh, J., An, S., Lee, C., Chang, J., Lee, S., Lee, M., & Seo, D. (2021). Investigation on the Printed CNT-Film-Based Electrochemical Sensor for Detection of Liquid Chemicals. Sensors, 21(15), 5179. https://doi.org/10.3390/s21155179

del Bosque, A., Sánchez-Romate, X. F., Sánchez, M., & Ureña, A. (2021). Flexible Wearable Sensors Based in Carbon Nanotubes Reinforced Poly(Ethylene Glycol) Diglycidyl Ether (PEGDGE): Analysis of Strain Sensitivity and Proof of Concept. Chemosensors, 9(7), 158. https://doi.org/10.3390/chemosensors9070158

Choi, C., Qaiser, N., & Hwang, B. (2024). Mechanically pressed polymer-matrix composites with 3d structured filler networks for electromagnetic interference shielding application. Facta Universitatis Series Mechanical Engineering, 24(4), 601-614. https://doi.org/10.22190/fume240601038c

Han, Y., Ha, H., Suryaprabha, T., Baumli, P., & Hwang, B. (2024). Mulberry-paper-based electrodes with hybrid nanocomposite coatings and their application to eco-friendly energy-storage devices. Cellulose, 31(3), 1675-1685. https://doi.org/10.1007/s10570-023-05701-y

Chen, L., Huang, Y., Ning, H., Liu, Y., Tang, H., Zhou, R., Jin, S., Zheng, J., Yao, R., & Peng, J. (2025). Flexible Piezoresistive Sensor Based on CNT/PVA Composite with Wide Linear Detection Range for Human Motion Monitoring. Polymers, 17(10), 1378. https://doi.org/10.3390/polym17101378

Chen, T., Liu, C., Liu, X., Zhu, C., & Zheng, D. (2024). Simultaneous Electrochemical Detection of Catechol and Hydroquinone Based on a Carbon Nanotube Paste Electrode Modified with Electro-Reduced Graphene Oxide. International Journal of Molecular Sciences, 25(18), 9829. https://doi.org/10.3390/ijms25189829

Yahyazadeh, A., Nanda, S., & Dalai, A. K. (2024). Carbon Nanotubes: A Review of Synthesis Methods and Applications. Reactions, 5(3), 429-451. https://doi.org/10.3390/reactions5030022

La Mura, M., Lamberti, P., & Tucci, V. (2021). Equivalent Electrical Circuit Modeling of CNT-Based Transparent Electrodes. Applied Sciences, 11(8), 3408. https://doi.org/10.3390/app11083408

Andezai, A., & Iroh, J. O. (2024). Influence of the Processing Conditions on the Rheology and Heat of Decomposition of Solution Processed Hybrid Nanocomposites and Implication to Sustainable Energy Storage. Energies, 17(16), 3930. https://doi.org/10.3390/en17163930

Choi, C., Yun, T. G., & Hwang, B. (2023). Dispersion Stability of Carbon Nanotubes and Their Impact on Energy Storage Devices. Inorganics, 11(10), 383. https://doi.org/10.3390/inorganics11100383

Han, Y., Ha, H., Choi, C., Yoon, H., Matteini, P., Cheong, J. Y., & Hwang, B. (2023). Review of Flexible Supercapacitors Using Carbon Nanotube-Based Electrodes. Applied Sciences, 13(5), 3290. https://doi.org/10.3390/app13053290

Hwang, B., Li, X., Kim, S. H., & Lim, S. (2017). Effect of carbon nanotube addition on mechanical reliability of Ag nanowire network. Materials Letters, 198, 202-205. https://doi.org/10.1016/j.matlet.2017.04.035

Yoon, H., Thompson, R., & Hwang, B. (2023). Dispersibility study of carbon nanotubes using multiple light scattering: A mini-review. Colloid and Interface Science Communications, 52, 100686. https://doi.org/10.1016/j.colcom.2022.100686

Kim, J., Han, J.-H., & Kim, J. H. (2023). A Study on the O2 Plasma Etching Method of Spray-Formed SWCNT Films and Their Utilization as Electrodes for Electrochemical Sensors. Sensors, 23(18), 7812. https://doi.org/10.3390/s23187812

George, J., Abdelghani, A., Bahoumina, P., Tantot, O., Baillargeat, D., Frigui, K., Bila, S., Hallil, H., & Dejous, C. (2019). CNT-Based Inkjet-Printed RF Gas Sensor: Modification of Substrate Properties during the Fabrication Process. Sensors, 19(8), 1768. https://doi.org/10.3390/s19081768

Ha, H., Ko, S., Goh, B., Müller, S., Baumann, R.-P., Leem, M., Jo Yoo, S., Choi, J., & Hwang, B. (2022). Influence of grain boundary density on the surface energy of nanocrystalline metal thin films. Applied Surface Science, 604, 154463. https://doi.org/10.1016/j.apsusc.2022.154463

Ha, H., Müller, S., Baumann, R. P., & Hwang, B. (2024). Peakforce quantitative nanomechanical mapping for surface energy characterization on the nanoscale: A mini-review. Facta Universitatis, Series: Mechanical Engineering, 22(1), 001-012.. https://doi.org/10.22190/fume221126001h

Ha, H., Mueller, S., Guriyanova, S., & Hwang, B. (2025). Surface energy characterization of a single microsphere particle using peakforce quantitative nanomechanical mapping mode of atomic force microscope. Facta Universitatis Series Mechanical Engineering,23(1), 171-181. https://doi.org/10.22190/fume250114012h

Doronin, F., Savel’ev, M., Rytikov, G., Evdokimov, A., & Nazarov, V. (2024). A New Approach to Carbon Nanotube Filament Nanostructuring for Additive Manufacturing. Polymers, 16(10), 1423. https://doi.org/10.3390/polym16101423

Zotti, A., Paduano, T., Napolitano, F., Zuppolini, S., Zarrelli, M., & Borriello, A. (2025). Fused Deposition Modeling of Polymer Composites: Development, Properties and Applications. Polymers, 17(8), 1054. https://doi.org/10.3390/polym17081054

Benchirouf, A., & Kanoun, O. (2024). Inkjet-Printed Multiwalled Carbon Nanotube Dispersion as Wireless Passive Strain Sensor. Sensors, 24(5), 1585. https://doi.org/10.3390/s24051585

Tzounis, L., Petousis, M., Grammatikos, S., & Vidakis, N. (2020). 3D printed thermoelectric polyurethane/multiwalled carbon nanotube nanocomposites: A novel approach towards the fabrication of flexible and stretchable organic thermoelectrics. Materials, 13(12), 2879. https://doi.org/10.3390/ma13122879

da Silva, M. M., Proença, M. P., Covas, J. A., & Paiva, M. C. (2024). Shape-Memory Polymers Based on Carbon Nanotube Composites. Micromachines, 15(6), 748. https://doi.org/10.3390/mi15060748

Truong, T., & Kim, J. (2024). A Wearable Strain Sensor Utilizing Shape Memory Polymer/Carbon Nanotube Composites Measuring Respiration Movements. Polymers, 16(3), 373. https://doi.org/10.3390/polym16030373

Keidar, M., & Waas, A. M. (2004). On the conditions of carbon nanotube growth in the arc discharge. Nanotechnology, 15(11), 1571. https://doi.rog/10.1088/0957-4484/15/11/034

Das, R., Shahnavaz, Z., Ali, M. E., Islam, M. M., & Abd Hamid, S. B. (2016). Can we optimize arc discharge and laser ablation for well-controlled carbon nanotube synthesis? Nanoscale Research Letters, 11(1), 510. https://doi.org/10.1186/s11671-016-1730-0

Ando, Y., & Zhao, X. (2006). Synthesis of carbon nanotubes by arc-discharge method. New diamond and frontier carbon technology, 16(3), 123-138.

Su, Y., & Zhang, Y. (2015). Carbon nanomaterials synthesized by arc discharge hot plasma. Carbon, 83, 90-99. https://doi.org/10.1016/j.carbon.2014.11.023

Chrzanowska, J., Hoffman, J., Małolepszy, A., Mazurkiewicz, M., Kowalewski, T. A., Szymanski, Z., & Stobinski, L. (2015). Synthesis of carbon nanotubes by the laser ablation method: Effect of laser wavelength. physica status solidi (b), 252(8), 1860-1867. https://doi.org/10.1002/pssb.201451614

Arepalli, S. (2004). Laser ablation process for single-walled carbon nanotube production. Journal of nanoscience and nanotechnology, 4(4), 317-325. https://doi.org/10.1166/jnn.2004.072

Vander Wal, R., Berger, G., & Ticich, T. (2003). Carbon nanotube synthesis in a flame using laser ablation for in situ catalyst generation. Applied Physics A, 77(7), 885-889. https://doi.org/10.1007/s00339-003-2196-3

Ismail, R. A., Mohsin, M. H., Ali, A. K., Hassoon, K. I., & Erten-Ela, S. (2020). Preparation and characterization of carbon nanotubes by pulsed laser ablation in water for optoelectronic application. Physica E: Low-dimensional Systems and Nanostructures, 119, 113997. https://doi.org/10.1016/j.physe.2020.113997

Qin, L. (1997). CVD synthesis of carbon nanotubes. Journal of materials science letters, 16(6), 457-459. https://doi.org/10.1023/A:1018504108114

Baddour, C. E., Fadlallah, F., Nasuhoglu, D., Mitra, R., Vandsburger, L., & Meunier, J.-L. (2009). A simple thermal CVD method for carbon nanotube synthesis on stainless steel 304 without the addition of an external catalyst. Carbon, 47(1), 313-318. https//doi.org/10.1016/j.carbon.2008.10.038

Su, M., Zheng, B., & Liu, J. (2000). A scalable CVD method for the synthesis of single-walled carbon nanotubes with high catalyst productivity. Chemical physics letters, 322(5), 321-326. https://doi.org/10.1016/S0009-2614(00)00422-X

Li, T., Liang, Y., Li, J., Yu, Y., Xiao, M.-M., Ni, W., Zhang, Z., & Zhang, G.-J. (2021). Carbon Nanotube Field-Effect Transistor Biosensor for Ultrasensitive and Label-Free Detection of Breast Cancer Exosomal miRNA21. Analytical Chemistry, 93(46), 15501-15507. https://doi.org/10.1021/acs.analchem.1c03573

Eatemadi, A., Daraee, H., Karimkhanloo, H., Kouhi, M., Zarghami, N., Akbarzadeh, A., Abasi, M., Hanifehpour, Y., & Joo, S. W. (2014). Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Research Letters, 9(1), 393. https://doi.org/10.1186/1556-276X-9-393

Sheng, J., Zeng, X., Zhu, Q., Yang, Z., & Zhang, X. (2017). Facile fabrication of CNT-based chemical sensor operating at room temperature. Materials Research Express, 4(12), 125701. https://doi.org/10.1088/2053-1591/aa9ac7

Zamzami, M. A., Rabbani, G., Ahmad, A., Basalah, A. A., Al-Sabban, W. H., Nate Ahn, S., & Choudhry, H. (2022). Carbon nanotube field-effect transistor (CNT-FET)-based biosensor for rapid detection of SARS-CoV-2 (COVID-19) surface spike protein S1. Bioelectrochemistry, 143, 107982. https://doi.org/10.1016/j.bioelechem.2021.107982

Liu, K., Yang, C., Song, L., Wang, Y., Wei, Q., Deng, Q., & Hu, N. (2022). Highly stretchable, superhydrophobic and wearable strain sensors based on the laser-irradiated PDMS/CNT composite. Composites Science and Technology, 218, 109148. https://doi.org/10.1016/j.compscitech.2021.109148

Ueda, T., Katsuki, S., Abhari, N. H., Ikegami, T., Mitsugi, F., & Nakamiya, T. (2008). Effect of laser irradiation on carbon nanotube films for NOx gas sensor. Surface and Coatings Technology, 202(22-23), 5325-5328. https://doi.org/10.1016/j.surfcoat.2008.06.009

Yang, C., Trikantzopoulos, E., Nguyen, M. D., Jacobs, C. B., Wang, Y., Mahjouri-Samani, M., Ivanov, I. N., & Venton, B. J. (2016). Laser treated carbon nanotube yarn microelectrodes for rapid and sensitive detection of dopamine in vivo. ACS sensors, 1(5), 508-515. https://doi.org/10.1021/acssensors.6b00021

Huang, K., Ning, H., Hu, N., Liu, F., Wu, X., Wang, S., Liu, Y., Zou, R., Yuan, W., & Wu, L. (2020). Ultrasensitive MWCNT/PDMS composite strain sensor fabricated by laser ablation process. Composites Science and Technology, 192, 108105. https://doi.org/10.1016/j.compscitech.2020.108105

Ramadurai, K., Cromer, C. L., Dillon, A. C., Mahajan, R. L., & Lehman, J. H. (2009). Raman and electron microscopy analysis of carbon nanotubes exposed to high power laser irradiance. Journal of Applied Physics, 105(9). https://doi.org/10.1063/1.3116165

Suzuki, D., Serien, D., Obata, K., Sugioka, K., Narazaki, A., & Terasaki, N. (2022). Improvement in laser-based micro-processing of carbon nanotube film devices. Applied Physics Express, 15(2), 026503. https://doi.org/10.35848/1882-0786/ac4d06

Nikitina, N. A., Ryabkin, D. I., Suchkova, V. V., Kuksin, A. V., Pyankov, E. S., Ichkitidze, L. P., Maksimkin, A. V., Kitsyuk, E. P., Gerasimenko, E. A., Telyshev, D. V., Bobrinetskiy, I., Selishchev, S. V., & Gerasimenko, A. Y. (2023). Laser-Formed Sensors with Electrically Conductive MWCNT Networks for Gesture Recognition Applications. Micromachines, 14(6), 1106. https://doi.org/10.3390/mi14061106

Loghin, F. C., Falco, A., Salmeron, J. F., Lugli, P., Abdellah, A., & Rivadeneyra, A. (2019). Fully Transparent Gas Sensor Based on Carbon Nanotubes. Sensors, 19(20), 4591. https://doi.org/10.3390/s19204591

Mittal, M., & Kumar, A. (2014). Carbon nanotube (CNT) gas sensors for emissions from fossil fuel burning. Sensors and Actuators B: Chemical, 203, 349-362. https://doi.org/10.1016/j.snb.2014.05.080

Peng, S., Cho, K., Qi, P., & Dai, H. (2004). Ab initio study of CNT NO2 gas sensor. Chemical physics letters, 387(4-6), 271-276. https://doi.org/10.1016/j.cplett.2004.02.026

Kumar, D., Chaturvedi, P., Saho, P., Jha, P., Chouksey, A., Lal, M., Rawat, J., Tandon, R., & Chaudhury, P. (2017). Effect of single wall carbon nanotube networks on gas sensor response and detection limit. Sensors and Actuators B: Chemical, 240, 1134-1140. https://doi.org/10.1016/j.snb.2016.09.095

Kawano, T., Chiamori, H. C., Suter, M., Zhou, Q., Sosnowchik, B. D., & Lin, L. (2007). An electrothermal carbon nanotube gas sensor. Nano letters, 7(12), 3686-3690. https://doi.org/10.1021/nl071964s

Liu, S. F., Moh, L. C., & Swager, T. M. (2015). Single-walled carbon nanotube–metalloporphyrin chemiresistive gas sensor arrays for volatile organic compounds. Chemistry of Materials, 27(10), 3560-3563. https://doi.org/10.1021/acs.chemmater.5b00153

Suehiro, J., Zhou, G., Imakiire, H., Ding, W., & Hara, M. (2005). Controlled fabrication of carbon nanotube NO2 gas sensor using dielectrophoretic impedance measurement. Sensors and Actuators B: Chemical, 108(1-2), 398-403. https://doi.org/10.1016/j.snb.2004.09.048

Leghrib, R., Felten, A., Pireaux, J., & Llobet, E. (2011). Gas sensors based on doped-CNT/SnO2 composites for NO2 detection at room temperature. Thin Solid Films, 520(3), 966-970. https://doi.org/10.1016/j.tsf.2011.04.186

Abraham, J. K., Philip, B., Witchurch, A., Varadan, V. K., & Reddy, C. C. (2004). A compact wireless gas sensor using a carbon nanotube/PMMA thin film chemiresistor. Smart Materials and Structures, 13(5), 1045. https://doi.org/ 10.1088/0964-1726/13/5/010

Wanna, Y., Srisukhumbowornchai, N., Tuantranont, A., Wisitsoraat, A., Thavarungkul, N., & Singjai, P. (2006). The effect of carbon nanotube dispersion on CO gas sensing characteristics of polyaniline gas sensor. Journal of nanoscience and nanotechnology, 6(12), 3893-3896. https://doi.org/10.1166/jnn.2006.675

Seekaew, Y., Wisitsoraat, A., Phokharatkul, D., & Wongchoosuk, C. (2019). Room temperature toluene gas sensor based on TiO2 nanoparticles decorated 3D graphene-carbon nanotube nanostructures. Sensors and Actuators B: Chemical, 279, 69-78. https://doi.org/10.1016/j.snb.2018.09.095

Milić, P., Marinković, D., Klinge, S., & Ćojbašić, Ž. (2023). Reissner-Mindlin based isogeometric finite element formulation for piezoelectric active laminated shells. Tehnički Vjesnik, 30(2), 416-425. https://doi.org/10.17559/TV-20230128000280

Published

2025-07-25

Issue

Section

Articles

How to Cite

Choi, S., & Hwang, B. (2025). An Introductory Review of Carbon Nanotube-Based Sensors: Mechanisms, Fabrication, and Applications. Spectrum of Mechanical Engineering and Operational Research, 1-17. https://doi.org/10.31181/smeor46