Disintegration of Bone Cement Using Pulsating Water Jet: A Comparative Study of Standard and Extended Nozzles

Authors

  • Akash Nag Faculty of Mechanical Engineering, VŠB - Technical University of Ostrava, Ostrava, Czech Republic Author https://orcid.org/0000-0003-0400-7739
  • Sergej Hloch 1) Faculty of Mechanical Engineering, VŠB - Technical University of Ostrava, Ostrava, Czech Republic; 2) The Czech Academy of Sciences, Institute of Geonics, Ostrava, Czech Republic Author https://orcid.org/0000-0003-4066-0620

DOI:

https://doi.org/10.31181/smeor21202525

Keywords:

Pulsating water jet, Erosion, PMMA, Bone Cement

Abstract

The paper deals with erosion of bone cement using a pulsating water jet at a pressure of 15 MPa, comparing the effectiveness of standard and extended nozzle with the length of 100 mm and diameter d = 0,3 mm. The research addresses the problem of optimizing bone cement removal techniques, which is critical for various medical applications, including revision surgeries and bone cement removal. The study employs an design of experiments where bone cement samples are subjected to erosion using a pulsating water jet system equipped with both standard and specially designed extended nozzles. Key parameters such as maximal depth, groove width and volume rate were measured and analyzed. Findings indicate that the extended nozzle significantly enhances the erosion process, achieving higher material removal rates and smoother surface finishes compared to the standard nozzle. The results demonstrate the potential of the extended nozzle design in improving the efficiency and precision of bone cement removal, offering valuable insights for medical practitioners and researchers in the field of orthopedic surgery.

Downloads

Download data is not yet available.

References

den Dunnen, S., Dankelman, J., Kerkhoffs, G. M. M. J., & Tuijthof, G. J. M. (2016). How do jet time, pressure and bone volume fraction influence the drilling depth when waterjet drilling in porcine bone? Journal of the Mechanical Behavior of Biomedical Materials, 62, 495–503. https://doi.org/10.1016/j.jmbbm.2016.05.030

Kavanagh, B. F., Ilstrup, D. M., & Fitzgerald, J. R. H. (1985). Revision total hip arthroplasty. The Journal of Bone and Joint Surgery. American Volume, 67(4), 517-526.

Porsch, M., & Schmidt, J. (2001). Cement removal with an endoscopically controlled ballistically driven chiselling system. A new device for cement removal and preliminary clinical results. Archives of Orthopaedic and Trauma Surgery, 121(5), 274-277. https://doi.org/10.1007/s004020000233

Sherk, H. H., Lane, G., Rhodes, A., Black, J., H.H., S., G., L., A., R., & J., B. (1995). Carbon dioxide laser removal of polymethylmethacrylate. Clinical Orthopaedics and Related Research, 310, 67-71.

Zimmer, M., Klöbl, R., De Toma, G., Jansson, V., Refior, H. J., Heimkes, B., & Kühne, J. H. (1992). Bone-cement removal with the excimer laser in revision arthroplasty. Archives of Orthopaedic and Trauma Surgery, 112(1), 15-17. https://doi.org/10.1007/BF00431037

Foldyna, J. (2011). Use of acoustic waves for pulsating water jet generation. Acoust. Waves-Microdevices Helioseismology, 14, 323-342. https://doi.org/10.5772/18862

Honl, M., Rentzsch, R., Müller, G., Brandt, C., Bluhm, A., Hille, E., Louis, H., & Morlock, M. (2000). The use of water?jetting technology in prostheses revision surgery-First results of parameter studies on bone and bone cement. Journal of Biomedical Materials Research Part A, 53(6), 781-790. https://doi.org/10.1002/1097-4636(2000)53:6<781::AID-JBM20>3.0.CO;2-G

Honl, M., Schwieger, K., Carrero, V., Rentzsch, R., Dierk, O., Dries, S., ... & Morlock, M. (2003). The pulsed water jet for selective removal of bone cement during revision arthroplasty. Biomedizinische Technik. Biomedical engineering, 48(10), 275-280. https://doi.org/10.1515/bmte.2003.48.10.275

Hloch, S., Foldyna, J., Pude, F., Kloc, J., Zelenak, M., Hvizdos, P., ... & Mihalcinova, E. (2015). Experimental in-vitro bone cements disintegration with ultrasonic pulsating water jet for revision arthroplasty. Tehnički vjesnik, 22(6), 1609-1615. https://doi.org/10.17559/TV-20150822145550

Saha, S., & Pal, S. (1984). Mechanical properties of bone cement: a review. Journal of biomedical materials research, 18(4), 435-462. https://doi.org/10.1002/jbm.820180411

Hloch, S., Foldyna, J., Sitek, L., Zeleňák, M., Hlaváček, P., Hvizdoš, P., Kľoc, J., Monka, P., Monková, K., Kozak, D., Magurová, D., Kl'oc, J., Monka, P., Monková, K., Kozak, D., & Magurová, D. (2017). Disintegration of bone cement by continuous and pulsating water jet. Technical Gazette, 3651(4), 593-598.

Hloch, S., Nag, A., Pude, F., Foldyna, J., & Zeleňák, M. (2019). On-line measurement and monitoring of pulsating saline and water jet disintegration of bone cement with frequency 20 kHz. Measurement, 147, 106828. https://doi.org/10.1016/j.measurement.2019.07.056

Nag, A., Hloch, S., Dixit, A. R., & Pude, F. (2020). Utilization of ultrasonically forced pulsating water jet decaying for bone cement removal. International Journal of Advanced Manufacturing Technology. https://doi.org/10.1007/s00170-020-05892-9

Nag, A., Dixit, A. R., Petrů, J., Váňová, P., Konečná, K., & Hloch, S. (2022). Maximization of wear rates through effective configuration of standoff distance and hydraulic parameters in ultrasonic pulsating water jet. Facta Universitatis, Series: Mechanical Engineering. https://doi.org/10.22190/FUME220523045N

Hvizdoš, P., Jakubéczyová, D., Hloch, S., Kľoc, J., Balko, J., & Monka, P. (2014). Local mechanical properties of various bone cements. Key Engineering Materials, 592, 382-385. https://doi.org/10.4028/www.scientific.net/KEM.592-593.382

Hloch, S., Srivastava, M., Nag, A., Muller, M., Hromasová, M., Svobodová, J., Kruml, T., & Chlupová, A. (2020). Effect of pressure of pulsating water jet moving along stair trajectory on erosion depth, surface morphology and microhardness. Wear, 452, 203278. https://doi.org/10.1016/j.wear.2020.203278

Nag, A., Hloch, S., Dixit, A. R., & Pude, F. (2020). Utilization of ultrasonically forced pulsating water jet decaying for bone cement removal. The International Journal of Advanced Manufacturing Technology, 110, 829-840. https://doi.org/10.1007/s00170-020-05892-9

Nag, A., Stolárik, G., Svehla, B., & Hloch, S. (2021). Effect of water flow rate on operating frequency and power during acoustic chamber tuning. In Advances in Manufacturing Engineering and Materials II: Proceedings of the International Conference on Manufacturing Engineering and Materials (ICMEM 2020), 21–25 June, 2021, Nový Smokovec, Slovakia (pp. 142-154). Springer International Publishing. https://doi.org/10.1007/978-3-030-71956-2_13

Srivastava, M., Nag, A., Chattopadhyaya, S., & Hloch, S. (2020). Standoff distance in ultrasonic pulsating water jet. Materials, 14(1), 88. https://doi.org/10.3390/ma14010088

Nag, A., Hvizdos, P., Dixit, A. R., Petrů, J., & Hloch, S. (2021). Influence of the frequency and flow rate of a pulsating water jet on the wear damage of tantalum. Wear, 477, 203893. https://doi.org/10.1016/j.wear.2021.203893

Hloch, S., Svobodová, J., Srivastava, A. K., Srivastava, M., Poloprudský, J., & Nag, A. (2024). Submerged pulsating water jet erosion of ductile material. Wear, 538–539. https://doi.org/10.1016/j.wear.2024.205243

Szada-Borzyszkowska, M., Kacalak, W., Banaszek, K., Borkowski, P. J., & Szada-Borzyszkowski, W. (2023). Analysis of the pulsating properties of a high-pressure water jet generated in a self-excited head for erosion processing. Archives of Civil and Mechanical Engineering, 23(4). https://doi.org/10.1007/s43452-023-00769-6

Szada-Borzyszkowska, M., Kacalak, W., Banaszek, K., Pude, F., Perec, A., Wegener, K., & Królczyk, G. (2024). Assessment of the effectiveness of high-pressure water jet machining generated using self-excited pulsating heads. The International Journal of Advanced Manufacturing Technology, 133(9), 5029-5051. https://doi.org/10.1007/s00170-024-14040-6

Published

2025-01-28

How to Cite

Nag, A., & Hloch, S. (2025). Disintegration of Bone Cement Using Pulsating Water Jet: A Comparative Study of Standard and Extended Nozzles. Spectrum of Mechanical Engineering and Operational Research, 2(1), 93-103. https://doi.org/10.31181/smeor21202525