Evaluating and Prioritizing Blockchain Networks using Intuitionistic Fuzzy Multi-Criteria Decision-Making Method
DOI:
https://doi.org/10.31181/smeor21202527Keywords:
Blockchain network, Intuitionistic fuzzy set, Distance measure, SWARA, TOPSIS, VIKORAbstract
Being a generalization of fuzzy set, intuitionistic fuzzy set (IFS) obtains a better representation of fuzziness and uncertainty. Inspired by this concept, this paper first proposes a logarithmic distance measure to calculate the degree of difference between IFSs. Moreover, this work develops a hybrid ranking model by combining the distance measure, rank-sum model, Stepwise Weight Assessment Ratio Analysis (SWARA) weighting tool, Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) and VIseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) methods under the context of intuitionistic fuzzy environment. In the proposed method, the rank-sum model is used to compute the decision makers’ weights, while the SWARA model is applied to evaluate the criteria weights. To show the practicality of developed model, it is executed to a case study of determining the rank of blockchain networks in the healthcare management system. Comparative study is presented to confirm the advantages of proposed approach over the existing methods.
Downloads
References
Javaid, M., Haleem, A., Singh, R. P., Suman, R., & Khan, S. (2022). A review of Blockchain Technology applications for financial services. BenchCouncil Transactions on Benchmarks, Standards and Evaluations, 2(3), 100073. https://doi.org/10.1016/j.tbench.2022.100073
Pathak, R., Soni, B., Muppalaneni, N. B., & Mishra, A. R. (2024). Multi-criteria group decision-making method based on einstein power operators, distance measure, additive ratio assessment, and interval-valued q-rung orthopair fuzzy sets. Granular Computing, 9, 14. https://doi.org/10.1007/s41066-023-00430-w
Habib, G., Sharma, S., Ibrahim, S., Ahmad, I., Qureshi, S., & Ishfaq, M. (2022). Blockchain Technology: Benefits, Challenges, Applications, and Integration of Blockchain Technology with Cloud Computing. Future Internet, 14(11), 341. https://doi.org/10.3390/fi14110341
Albshaier, L., Almarri, S., & Hafizur Rahman, M. M. (2024). A review of blockchain’s role in e-commerce transactions: Open challenges, and future research directions. Computers, 13(1), 27. https://doi.org/10.3390/computers13010027
Sciarelli, M., Prisco, A., Gheith, M.H., & Muto, V. (2022). Factors affecting the adoption of blockchain technology in innovative Italian companies: an extended TAM approach. Journal of Strategy and Management, 15(3), 495-507. https://doi.org/10.1108/JSMA-02-2021-0054
Li, C., Zhang, Y., & Xu, Y. (2022). Factors Influencing the Adoption of Blockchain in the Construction Industry: A Hybrid Approach Using PLS-SEM and fsQCA. Buildings, 12, 01-22. https://doi.org/10.3390/buildings12091349
Siddiqui, Z. A., & Haroon, M. (2023). Research on significant factors affecting adoption of blockchain technology for enterprise distributed applications based on integrated mcdm fcem-multimoora-FG method. Eng. Appl. Artif. Intell., 118, 105699. https://doi.org/10.1016/j.engappai.2022.105699
Kizielewicz, B., & Sałabun, W. (2024). SITW method: A new approach to re-identifying multi-criteria weights in complex decision analysis. Spectrum of Mechanical Engineering and Operational Research, 1(1), 215-226. https://doi.org/10.31181/smeor11202419
Božanić, D., Epler, I., Puška, A., Biswas, S., Marinković, D., & Koprivic, S. (2024). Application of the DIBR II–rough MABAC decision-making model for ranking methods and techniques of lean organization systems management in the process of technical maintenance. Facta Universitatis, Series: Mechanical Engineering, 22(1), 101-123. https://doi.org/10.22190/FUME230614026B
Zadeh, L.A. (1965). Fuzzy sets. Information and Control, 8, 338–353.
Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy sets and Systems, 20(1), 87-96.
Bajaj, J., & Kumar, S. (2023). A new intuitionistic fuzzy correlation coefficient approach with applications in multi-criteria decision-making. Decision Analytics Journal, 9, 100340. https://doi.org/10.1016/j.dajour.2023.100340
Mishra, A. R., Rani, P., Cavallaro, F., & Alrasheedi, A. F. (2023). Assessment of sustainable wastewater treatment technologies using interval-valued intuitionistic fuzzy distance measure-based MAIRCA method. Facta Universitatis, Series: Mechanical Engineering, 21(3), 359-386.
Hussain, A., & Ullah, K. (2024). An Intelligent Decision Support System for Spherical Fuzzy Sugeno-Weber Aggregation Operators and Real-Life Applications. Spectrum of Mechanical Engineering and Operational Research, 1(1), 177-188. https://doi.org/10.31181/smeor11202415
Wan, S.-P., Dong, J.-Y., & Chen, S.-M. (2024). A novel intuitionistic fuzzy best-worst method for group decision making with intuitionistic fuzzy preference relations. Information Sciences, 666, 120404. https://doi.org/10.1016/j.ins.2024.120404
Rouyendegh, B.D., Yildizbasi, A., & Üstünyer, P. (2020). Intuitionistic Fuzzy TOPSIS method for green supplier selection problem. Soft Computing, 24, 2215-2228. https://doi.org/10.1007/s00500-019-04054-8
Roszkowska, E., Kusterka-Jefmańska, M., & Jefmański, B. (2021). Intuitionistic fuzzy TOPSIS as a method for assessing socioeconomic phenomena on the basis of survey data. Entropy 23(5), 1-26. https://doi.org/10.3390/e23050563
Sun, G., Wang, M., Li, X., & Huang, W. (2023). Distance measure and intuitionistic fuzzy TOPSIS method based on the centroid coordinate representation. Journal of Intelligent & Fuzzy Systems, 44(1), 555-571. https://doi.org/10.3233/JIFS-221732
Qin, Y., Rizk-Allah, R. M., Garg, H., Hassanien, A. E., & Snášel, V. (2023). Intuitionistic fuzzy-based TOPSIS method for multi-criterion optimization problem: a novel compromise methodology. AIMS Mathematics, 8(7), 16825-16845. https://doi.org/10.3934/math.2023860
Krishankumar, R., Premaladha, J., Ravichandran, K. S., Sekar, K. R., Manikandan, R., & Gao, X. Z. (2020). A novel extension to VIKOR method under intuitionistic fuzzy context for solving personnel selection problem. Soft Computing, 24, 1063–1081. https://doi.org/10.1007/s00500-019-03943-2
Dağıstanlı, H. A. (2024). An interval-valued intuitionistic fuzzy VIKOR approach for R&D project selection in defense industry investment decisions. Journal of Soft Computing and Decision Analytics, 2(1), 1-13. https://doi.org/10.31181/jscda21202428
Kansal, D., & Kumar, S. (2024). Multi-criteria decision-making based on intuitionistic fuzzy exponential knowledge and similarity measure and improved VIKOR method. Granular Computing, 9, 26. https://doi.org/10.1007/s41066-023-00448-0
Liang, J., Liu, P. (2024). Shared manufacturing service evaluation based on intuitionistic fuzzy VIKOR. Heliyon 10, 1-17. https://doi.org/10.1016/j.heliyon.2024.e29250
Sedady, F., Beheshtinia, M. A. (2019). A novel MCDM model for prioritizing the renewable power plants’ construction. Management of Environmental Quality, 30(2), 383-399. https://doi.org/10.1108/MEQ-05-2018-0102
Xu Z.S. (2007). Intuitionistic fuzzy aggregation operators. IEEE Transactions on Fuzzy Systems, 15(6), 1179–1187.
Xu, G. L., Wan, S. P., Xie, X. L. (2015). A Selection Method Based on MAGDM with Interval-Valued Intuitionistic Fuzzy Sets. Mathematical Problems in Engineering, 2015 (Article ID 791204), 1-13. https://doi.org/10.1155/2015/791204
Xu, Z., & Chen, J. (2008). An overview of distance and similarity measures of intuitionistic fuzzy sets. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 16(04), 529-555.
Ghosh, P. K., Chakraborty, A., Hasan, M., Rashid, K., & Siddique, A. H. (2023). Blockchain Application in Healthcare Systems: A Review. Systems, 11(1), 38. https://doi.org/10.3390/systems11010038
Haleem, A., Javaid, M., Singh, R. P., Suman, R., & Rab, S. (2021). Blockchain technology applications in healthcare: An overview. International Journal of Intelligent Networks, 2, 130-139. https://doi.org/10.1016/j.ijin.2021.09.005
Saeed, H., Malik, H., Bashir, U., Ahmad, A., Riaz, S., Ilyas, M., Bukhari, W. A., & Khan, M. I. A. (2022). Blockchain technology in healthcare: A systematic review. PLoS One, 17(4), e0266462. https://doi.org/10.1371/journal.pone.0266462
Habibullah, S.M., Alam, S., Ghosh, S., Dey, A., & De, A. (2024). Blockchain-based energy consumption approaches in IoT. Scientific Reports, 14, 28088. https://doi.org/10.1038/s41598-024-77792-x.
Jiang, P., Zhang, L., You, S., Fan, Y. V., Tan, R. R., Klemeš, J. J., & You, F. (2023). Blockchain technology applications in waste management: Overview, challenges and opportunities. Journal of Cleaner Production, 421, 13866. https://doi.org/10.1016/j.jclepro.2023.138466
Arshad, Q. A., Khan, W. Z., Azam, F., Khan, M. K., Yu, H., & Zikria, Y. B. (2023). Blockchain-based decentralized trust management in IoT: systems, requirements and challenges. Complex & Intelligent Systems, 9, 6155–6176. https://doi.org/10.1007/s40747-023-01058-8
Xiang, X., Cao, J., Fan, W., Xiang, S., Wang, G. (2024). Blockchain enabled dynamic trust management method for the internet of medical things. Decision Support Systems, 180, 114184. https://doi.org/10.1016/j.dss.2024.114184.
Hezam, I.M., Mishra, A.K., Pamucar, D., Rani, P., & Mishra, A.R. (2024). Standard deviation and rank sum-based MARCOS model under intuitionistic fuzzy information for hospital site selection. Kybernetes, 53, 3727-3753. https://doi.org/10.1108/K-01-2023-0136
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Scientific Oasis

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.