Frequency-Amplitude Relationship in Nonlinear Oscillators with Irrational Nonlinearities

Authors

DOI:

https://doi.org/10.31181/smeor21202535

Keywords:

Nonlinear oscillator, Irrational nonlinearity, Frequency-amplitude relationship, Complex dynamics, Mathematical modeling

Abstract

This study investigates the frequency-amplitude relationship in nonlinear oscillators with irrational nonlinearities, which pose significant challenges to traditional analytical methods such as the homotopy perturbation method and variational iteration method. By employing a simplified frequency formulation, we analyze the impact of irrational nonlinearities on oscillation dynamics and derive a frequency-amplitude relationship in a single-step calculation. For small amplitudes, our results are consistent with those obtained by the homotopy perturbation method, validating the proposed approach. This research provides new insights into the complex dynamics of nonlinear oscillators and offers practical implications for fields such as physics, engineering, and applied mathematics. Additionally, it contributes to the design and optimization of MEMS systems and suggests future research directions, including the incorporation of damping and external forces for a more comprehensive understanding of system behavior.

Downloads

Download data is not yet available.

References

Chen, H. Y., Ding, H., & Chen, L. Q. (2024). Coupling vibration of a moving oscillator with a sandwich plate on nonlinear foundations. Journal of Vibration Engineering & Technologies, 12, 7611–7620. https://doi.org/10.1007/s42417-024-01315-1

Elmoghazy, Y. H., Safaei, B., & Sahmani, S. (2023). Finite element analysis for dynamic response of viscoelastic sandwiched structures integrated with aluminum sheets. Facta Universitatis, Series: Mechanical Engineering, 21(4), 591–614.

He, C. H., Tian, D., Moatimid, G. M., Salman, H. F., & Zekry, M. H. (2022). Hybrid Rayleigh-van der Pol-Duffing oscillator: Stability analysis and controller. Journal of Low Frequency Noise, Vibration and Active Control, 41(1), 244–268. https://doi.org/10.1177/14613484221077474

Ren, Z., Chen, J., Wang, T., Chen, L., & He, J. H. (2024). Main sub-harmonic joint resonance of fractional quintic van der Pol-Duffing oscillator. Nonlinear Dynamics, 112, 17863–17880. https://doi.org/10.1007/s11071-024-09977-y

Misra, V. (2023). El Niño and the Southern Oscillation. In An introduction to large-scale tropical meteorology. Springer. https://doi.org/10.1007/978-3-031-12887-5_7

De, S., Agarwal, N. K., Chowdary, J. S., & Karmakar, S. (2024). Scale interactions during ENSO – A new dynamical mechanism on unveiling ENSO-monsoon nonlinearity. Theoretical and Applied Climatology, 155, 8119–8138. https://doi.org/10.1007/s00704-024-05111-5

Gao, X. L., Zhang, H. L., Li, X. Y., & Wang, Y. (2024). Research on pattern dynamics behavior of a fractional vegetation-water model in arid flat environment. Fractal and Fractional, 8(5), 264.

Gao, X. L., Zhang, H. L., & Li, X. Y. (2024). Research on pattern dynamics of a class of predator-prey model with interval biological coefficients for capture. AIMS Mathematics, 9(7), 18506–18527.

Kudelin, I., Groman, W., Ji, Q. X., Luke, K., Voloshin, A., & Papp, S. B. (2024). Photonic chip-based low-noise microwave oscillator. Nature, 627, 534–539. https://doi.org/10.1038/s41586-024-07058-z

Ghosh, P., Alvertis, A. M., Chowdhury, R., Myers, J. A., & Baydin, A. (2024). Decoupling excitons from high-frequency vibrations in organic molecules. Nature, 629, 355–362. https://doi.org/10.1038/s41586-024-07246-x

Stokowski, H. S., Dean, D. J., Hwang, A. Y., McKenna, T. P., & Safavi-Naeini, A. H. (2024). Integrated frequency-modulated optical parametric oscillator. Nature, 627, 95–100. https://doi.org/10.1038/s41586-024-07071-2

Javaid, F., Bashir, U., Saleem, M. M., & Riaz, R. (2024). Design, analysis and experimental characterization of MEMS based one hot-arm electrothermal actuator. Engineering Research Express, 6(4), 045309.

Aydin, G. D., Akar, O. S., & Akin, T. (2024). Wafer level vacuum packaging of MEMS-based uncooled infrared sensors. Micromachines, 15(8), 935.

Fan, X., He, C., Ding, J., Zhang, Y., & Wang, L. (2024). Graphene MEMS and NEMS. Microsystems & Nanoengineering, 10, 154. https://doi.org/10.1038/s41378-024-00791-5

He, J. H. (2024). Periodic solution of a micro-electromechanical system. Facta Universitatis, Series: Mechanical Engineering, 22(2), 187–198. https://doi.org/10.22190/FUME240603034H

Tian, D., Ain, Q. T., Anjum, N., & He, C. H. (2021). Fractal N/MEMS: From pull-in instability to pull-in stability. Fractals, 29(2), 2150030.

Molla, S., Farrok, O., & Alam, M. J. (2024). Sustainable solution to the critical challenges of an oceanic wave farm for maximizing power generation. Renewable Energy, 237(Part A), 121461.

Tian, D., & He, C. H. (2021). A fractal micro-electromechanical system and its pull-in stability. Journal of Low Frequency Noise, Vibration and Active Control, 40(3), 1380–1386. https://doi.org/10.1177/1461348420984041

He, C. H. (2023). A variational principle for a fractal nano/microelectromechanical (N/MEMS) system. International Journal of Numerical Methods for Heat & Fluid Flow, 33(1), 351–359. https://doi.org/10.1108/HFF-03-2022-0191

He, C. H., Amer, T. S., Tian, D., Abolila, A. F., & Galal, A. A. (2022). Controlling the kinematics of a spring-pendulum system using an energy harvesting device. Journal of Low Frequency Noise, Vibration and Active Control, 41(3), 1234–1257. https://doi.org/10.1177/14613484221077474

Ma, X., Zhang, H., Margielewicz, J., & Liu, H. (2024). A dual-beam piezo-magneto-elastic wake-induced vibration energy harvesting system for high-performance wind energy harvesting. Science China Technological Sciences, 67, 221–239. https://doi.org/10.1007/s11431-023-2421-4

Yay, Ö., Diltemiz, S. F., Kuşhan, M. C., & Gürgen, S. (2024). Shear thickening fluid-based vibration damping applications. In Smart systems with shear thickening fluid (pp. [Chapter pages]). Springer. https://doi.org/10.1007/978-3-031-53570-3_5

He, C. H., & El-Dib, Y. O. (2022). A heuristic review on the homotopy perturbation method for non-conservative oscillators. Journal of Low Frequency Noise, Vibration and Active Control, 41(2), 572–603. https://doi.org/10.1177/14613484211059264

He, J. H., He, C. H., & Alsolami, A. A. (2023). A good initial guess for approximating nonlinear oscillators by the homotopy perturbation method. Facta Universitatis, Series: Mechanical Engineering, 21(1), 21–29.

He, J. H., Yang, Q., He, C. H., & Alsolami, A. A. (2023). Pull-down instability of the quadratic nonlinear oscillators. Facta Universitatis, Series: Mechanical Engineering, 21(2), 191–200. https://doi.org/10.22190/FUME230114007H

Feng, G. Q. (2024). Higher-order homotopy perturbation method for the fractal rotational pendulum oscillator. Journal of Vibration Engineering & Technologies, 12, 2829–2834. https://doi.org/10.1007/s42417-023-01016-1

Anjum, N., Rasheed, A., He, J. H., & Tian, D. (2024). Free vibration of a tapered beam by the Aboodh transform-based variational iteration method. Journal of Computational Applied Mechanics, 55(3), 440–450. https://doi.org/10.22059/JCAMECH.2024.377439.1116

Wang, X., Elgohary, T. A., Zhang, Z., & Liu, J. (2023). An adaptive local variational iteration method for orbit propagation in astrodynamics problems. The Journal of the Astronautical Sciences, 70, 2. https://doi.org/10.1007/s40295-023-00366-y

Rossikhin, A. A., & Mileshin, V. I. (2024). Application of the harmonic balance method to calculate the first booster stage tonal noise. Mathematical Models and Computer Simulations, 16, 63–75. https://doi.org/10.1134/S2070048224010083

Liu, L. P., Barnes, C. J., & Dowell, E. H. (2024). A new development of the harmonic balance method: The hybrid harmonic balance method. Analysis and Applications. Advance online publication. https://doi.org/10.1142/S021953052441001X

Treacy, C., Stein, D., & Chelidze, D. (2024). Irrational nonlinearity enhances the targeted energy transfer in a rotary nonlinear energy sink. Journal of Computational and Nonlinear Dynamics, 19(6), 061001. https://doi.org/10.1115/1.4065193

Han, N., Zhang, H., Lu, P., & Liu, Z. (2024). Resonance response and chaotic analysis for an irrational pendulum system. Chaos, Solitons & Fractals, 182, 114812. https://doi.org/10.1016/j.chaos.2024.114812

He, J. H. (2019). The simpler, the better: Analytical methods for nonlinear oscillators and fractional oscillators. Journal of Low Frequency Noise, Vibration and Active Control, 38(3-4), 1252-1260.

He, J. H. (2019). The simplest approach to nonlinear oscillators. Results in Physics, 15, 102546. https://doi.org/10.1016/j.rinp.2019.102546

He, C. H., & Liu, C. (2022). A modified frequency-amplitude formulation for fractal vibration systems. Fractals, 30(3), 2250046. https://doi.org/10.1142/S0218348X22500460

Feng, G. Q. (2021). He's frequency formula to fractal undamped Duffing equation. Journal of Low Frequency Noise, Vibration and Active Control, 40(4), 1671-1676. https://doi.org/10.1177/14613484211002971

Tsaltas, K. (2023). An improved one-step amplitude-frequency relation for nonlinear oscillators. Results in Physics, 54, 107090. https://doi.org/10.1016/j.rinp.2023.107090

Ismail, G. M., Moatimid, G. M., & Yamani, M. I. (2024). Periodic solutions of strongly nonlinear oscillators using He's frequency formulation. European Journal of Pure and Applied Mathematics, 17(3), 2155-2172.

El-Dib, Y. O. (2021). The frequency estimation for non-conservative nonlinear oscillation. Zeitschrift für Angewandte Mathematik und Mechanik, 101(12), e202100187. https://doi.org/10.1002/zamm.202100187

El-Dib, Y. O., Elgazery, N. S., & Gad, N. S. (2023). A novel technique to obtain a time-delayed vibration control analytical solution with simulation of He's formula. Journal of Low Frequency Noise, Vibration and Active Control, 42(3), 1379-1389. https://doi.org/10.1177/14613484231152102

Kawser, M. A., Alim, M. A., & Sharif, N. (2024). Analyzing nonlinear oscillations with He's frequency-amplitude method and numerical comparison in jet engine vibration system. Heliyon, 10(2), e24261. https://doi.org/10.1016/j.heliyon.2024.e24261

Hashemi, G. (2023). A novel analytical approximation approach for strongly nonlinear oscillation systems based on the energy balance method and He's frequency-amplitude formulation. Computational Methods for Differential Equations, 11(3), 464-477.

Mohammadian, M. (2024). Application of He's new frequency-amplitude formulation for the nonlinear oscillators by introducing a new trend for determining the location points. Chinese Journal of Physics, 89, 1024-1040. https://doi.org/10.1016/j.cjph.2024.02.012

Zhang, J. G., Song, Q. R., Li, X., & Wang, Y. (2023). Application of He's frequency formulation to nonlinear oscillators with generalized initial conditions. Facta Universitatis, Series: Mechanical Engineering, 21(4), 701-712.

Elías-Zúñiga, A. (2013). Exact solution of the cubic-quintic Duffing oscillator. Applied Mathematical Modelling, 37(4), 2574-2579. https://doi.org/10.1016/j.apm.2012.06.004

Lev, B. I., Tymchyshyn, V. B., & Zagorodny, A. G. (2017). On certain properties of nonlinear oscillator with coordinate-dependent mass. Physics Letters A, 381(39), 3417-3423. https://doi.org/10.1016/j.physleta.2017.08.021

Moussa, B., Youssouf, M., AbdoulWassiha, N., & Youssouf, P. (2024). Homotopy perturbation method to solve Duffing-van der Pol equation. Advances in Differential Equations and Control Processes, 31(3), 2439.

Brodsky, Y. I. (2024). Analyzing and simulating the oscillation in multidimensional odd competitive systems. Advances in Differential Equations and Control Processes, 31(3), 2441.

Alshomrani, N., Alharbi, W. G., Alanazi, I., Alyasi, L., Alrefaei, G., Al'amri, S. A., & Alanzi, A. (2024). Homotopy perturbation method for solving a nonlinear system for an epidemic. Advances in Differential Equations and Control Processes, 31(3), 2442.

El-Dib, Y. O. (2024). Stability analysis of a time-delayed Van der Pol-Helmholtz-Duffing oscillator in fractal space with a non-perturbative approach. Communications in Theoretical Physics, 76(4), 045003. https://doi.org/10.1088/1572-9494/ad2a4c

El-Dib, Y. O., Elgazery, N. S., Khattab, Y. M., & Alyousef, H. A. (2023). An innovative technique to solve a fractal damping Duffing-jerk oscillator. Communications in Theoretical Physics, 75(5), 055001. https://doi.org/10.1088/1572-9494/acc6e3

Published

2025-03-30

How to Cite

He, J.-H. (2025). Frequency-Amplitude Relationship in Nonlinear Oscillators with Irrational Nonlinearities. Spectrum of Mechanical Engineering and Operational Research, 2(1), 121-129. https://doi.org/10.31181/smeor21202535