Numerical Study of Residual Stress Effects on Deformation and Fracture in Metal Matrix Composites
DOI:
https://doi.org/10.31181/smeor21202537Keywords:
Microstructure-based numerical simulation, Metal matrix composite materials, Residual stress, FractureAbstract
Composite materials used in various industries possess pronounced microstructural heterogeneity characterised by the difference in thermomechanical properties of the constituents and the presence of interfaces of different scales and geometries. In this study, the deformation and fracture of an aluminium alloy with a metal matrix composite coating under thermomechanical loading are numerically investigated at the micro-, meso- and macroscales. Complex microstructure of the composite material corresponding to the experimentally observed one is taken into account explicitly in the calculations. The constitutive equations for an isotropic elastic-plastic Al6061T6 matrix and elastic-brittle boron carbide particles are integrated into the ABAQUS/Explicit software package via user-defined subroutines. An energy-based fracture criterion formulated in terms of equivalent stresses is used to take into account the fracture of ceramic particles in local regions of tension or compression. The influence of residual stresses on the composite macroscopic strength, plastic strain localisation in the aluminum matrix and crack initiation and propagation in the particles is investigated under uniaxial tension or compression of the composite, with the volume fraction of particles in the coating being varied.
Downloads
References
Wu, X., & Zhang, W. (2024). A review on aluminum matrix composites’ characteristics and applications for automotive sector. Heliyon, 10(1), Article e38576. https://doi.org/10.1016/j.heliyon.2024.e38576
Nie, Z., Lu, H., Yang, F., & Xu, G. (2025). Preparation and property enhancement of SiC particle-reinforced aluminum matrix composites based on micro-arc oxidation. Journal of Alloys and Compounds, 1010, Article 177388. https://doi.org/10.1016/j.jallcom.2024.177388
Singh, H., Brar, G. S., Kumar, H., & Aggarwal, V. (2021). A review on metal matrix composite for automobile applications. Materials Today: Proceedings, 43(1), 320–325. https://doi.org/10.1016/j.matpr.2020.11.670
Ravi, L., Vanaraj, P. W., B. S, S., Perumal, S., Kumar, S., & Ravikirana. (2025). Enhancing mechanical and tribological properties of aluminum metal matrix composite reinforced with high entropy alloy using friction stir processing. Materials Chemistry and Physics, 338, Article 130614. https://doi.org/10.1016/j.matchemphys.2025.130614
Garg, P., Jamwal, A., Kumar, D., Sadasivuni, K. K., Hussain, C. M., & Gupta, P. (2019). Advance research progresses in aluminium matrix composites: Manufacturing & applications. Journal of Materials Research and Technology, 8(5), 4924–4939. https://doi.org/10.1016/j.jmrt.2019.06.028
Auradi, V., Rajesh, G. L., & Kori, S. A. (2014). Processing of B4C particulate reinforced 6061 aluminum matrix composites by melt stirring involving two-step addition. Procedia Materials Science, 6, 1068–1076. https://doi.org/10.1016/j.mspro.2014.07.177
Fomin, V. M., Golyshev, A. A., Kosarev, V. F., Malikov, A. G., Orishich, A. M., & Filippov, A. A. (2020). Deposition of cermet coatings on the basis of Ti, Ni, WC, and B4C by cold gas dynamic spraying with subsequent laser irradiation. Physical Mesomechanics, 23, 291–300. https://doi.org/10.1134/S1029959920040025
Chintada, S., Dora, S. P., Kare, D., & Doddi, P. R. V. (2021). Developments in sintered aluminium-based composites. Metal Powder Report, 76(6), 32–39. http://doi.org/10.1016/S0026-0657(21)00301-5
Wu, D., Zhang, J., Li, W., Xu, Y., Yang, X., & Su, Y. (2024). Morphology of ceramic regulates the deposition behavior and mechanical properties of cold spray additive manufactured Al2O3/2024 aluminum matrix composites. Materials Characterization, 215(7), Article 114197. https://doi.org/10.1016/j.matchar.2024.114197
Kumar, S. D., Ravichandran, M., Jeevika, A., Stalin, B., Kailasanathan, C., & Karthick, A. (2021). Effect of ZrB2 on microstructural, mechanical and corrosion behaviour of aluminium (AA7178) alloy matrix composite prepared by the stir casting route. Ceramics International, 47(9), 12951–12962. https://doi.org/10.1016/j.ceramint.2021.01.158
Ahmad, S., Tian, Y., Hashmi, A. W., Singh, R. K., Iqbal, F., Dangi, S., Alansari, A., Prakash, C., & Chan, C. K. (2024). Experimental studies on mechanical properties of Al-7075/TiO2 metal matrix composite and its tribological behaviour. Journal of Materials Research and Technology, 30(1), 8539–8552. https://doi.org/10.1016/j.jmrt.2024.05.227
Zhu, J., Jiang, W., Li, G., Guan, F., Yu, Y., & Fan, Z. (2020). Microstructure and mechanical properties of SiCnp/Al6082 aluminum matrix composites prepared by squeeze casting combined with stir casting. Journal of Materials Processing Technology, 283, Article 116699. http://doi.org/10.1016/j.jmatprotec.2020.116699
Adetunla, A., Akinlabi, E., & Jen, T.-C. (2024). In-depth characterization of FSP-enhanced aluminum metal matrix: A study in materials modeling and computational techniques. Journal of Materials Research and Technology, 29, 5721–5730. https://doi.org/10.1016/j.jmrt.2024.02.229
Liu, F. C., Feng, A. H., Pei, X., Hovanski, Y., Mishra, R. S., & Ma, Z. Y. (2024). Friction stir based welding, processing, extrusion and additive manufacturing. Progress in Materials Science, 146(1980–2015), Article 101330. https://doi.org/10.1016/j.pmatsci.2024.101330
Lehner, P., Blinn, B., Zhu, T., Al-Zuhairi, A., Smaga, M., Teutsch, R., Beck, T. (2024). Influence of the as-built surface and a T6 heat treatment on the fatigue behavior of additively manufactured AlSi10Mg. International Journal of Fatigue, 187, Article 108479. https://doi.org/10.1016/j.ijfatigue.2024.108479
Tang, S., Ummethala, R., Suryanarayana, C., Eckert, J., Prashanth, K. G., & Wang, Z. (2021). Additive manufacturing of aluminum‐based metal matrix composites—A review. Advanced Engineering Materials, 23(7), Article 2100053. https://doi.org/10.1002/adem.202100053
Nartu, M. S. K. K. Y., & Agrawal, P. (2025). Additive manufacturing of metal matrix composites. Materials & Design, Article 113609. https://doi.org/10.1016/j.matdes.2025.113609
Zhu, Z., Hu, Z., Seet, H. L., Liu, T., Liao, W., Ramamurty, U., & Ling Nai, S. M. (2023). Recent progress on the additive manufacturing of aluminum alloys and aluminum matrix composites: Microstructure, properties, and applications. International Journal of Machine Tools and Manufacture, 190(5), Article 104047. https://doi.org/10.1016/j.ijmachtools.2023.104047
Rashid, A., & Gopaluni, A. (2023). A review of residual stress and deformation modeling for metal additive manufacturing processes. Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers, 2(4), Article 100102. https://doi.org/10.1016/j.cjmeam.2023.100102
Yan, A., Zhang, H., Deng, B., Peng, F., Yan, R., & Cui, F. (2024). Analytical modeling of subsurface damage in laser-assisted machining of metal matrix composites based on the reinforcement fracture probability. Journal of Manufacturing Processes, 109, 300-312. https://doi.org/10.1016/j.jmapro.2023.12.001.
Ma, S., Zhang, X., Chen, T., & Wang, X. (2020). Microstructure-based numerical simulation of the mechanical properties and fracture of a Ti-Al3Ti core-shell structured particulate reinforced A356 composite. Materials & Design, 19, Article 108685. http://doi.org/10.1016/j.matdes.2020.108685
Wu, H., Xu, W., Shan, D., Wang, X., Guo, B., & Jin, B. C. (2023). Micromechanical modeling of damage evolution and fracture behavior in particle-reinforced metal matrix composites based on the conventional theory of mechanism-based strain gradient plasticity. Journal of Materials Research and Technology, 22, 625–641. https://doi.org/10.1016/j.jmrt.2022.11.139
Ye, C., Wang, K., Ouyang, Q., Li, Z., & Zhang, D. (2024). Deformation and fracture of SiCp/Al composites under complex loading conditions: A simulation study. Journal of Materials Research and Technology, 30, 8137–8151. https://doi.org/10.1016/j.jmrt.2024.05.179
Węglewski, W., Sequeira, A. A., Bochenek, K., Rosc, J., Brunner, R., & Basista, M. (2024). Finite element modeling of thermal residual stresses in functionally graded aluminum-matrix composites using X-ray micro-computed tomography. Finite Elements in Analysis and Design, 241(4), Article 104239. https://doi.org/10.1016/j.finel.2024.104239
Balokhonov, R. R., Romanova, V. A., & Schmauder, S. (2019). A numerical study of plastic strain localization and fracture across multiple spatial scales in materials with metal-matrix composite coatings. Theoretical and Applied Fracture Mechanics, 101, 342–355. https://doi.org/10.1016/j.tafmec.2019.03.013
Balokhonov, R., Utyaganova, V., Gatiyatullina, D., Zemlianov, A., & Romanova, V. (2024). Interlayer effect on deformation and fracture of dendritic structure formed during wire-feed electron-beam additive manufacturing of Al-Si alloy. Facta Universitatis, Series: Mechanical Engineering, 22(3), 515–527. https://doi.org/10.22190/FUME240104009B
Zemlyanov, A. V., Gatiyatullina, D. D., Utyaganova, V. R., & others. (2023). A study of deformation and fracture of the eutectic in an additively manufactured Al-Si composite. Physical Mesomechanics, 26(6), 678–690. http://doi.org/10.1134/S1029959923060073
Kadolkar, P. B., Watkins, T. R., De Hosson, J. Th. M., Kooi, B. J., & Dahotre, N. B. (2007). State of residual stress in laser-deposited ceramic composite coatings on aluminum alloys. Acta Materialia, 55(4), 1203–1214. https://doi.org/10.1016/j.actamat.2006.07.049
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ruslan Balokhonov, Aleksandr Zemlianov, Diana Gatiyatullina, Varvara Romanova (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.











All site content, except where otherwise noted, is licensed under the