Selection of Ice Crossing Point location using hybrid MCDM model Fuzzy AHP-EWAA-Fuzzy CoCoSo

Authors

DOI:

https://doi.org/10.31181/smeor21202545

Keywords:

Fuzzy number, AHP, CoCoSo, Location, Tank, Frozen water obstacles, Ice Crossing Point, Ma-Zheng scale

Abstract

This paper investigates the selection of locations for tank crossings over frozen water obstacles using a hybrid Fuzzy Analytic Hierarchy Process (AHP)–Einstein Weighted Arithmetic Average (EWAA)–Fuzzy Combined Compromise Solution (CoCoSo) model. The analysis includes key criteria relevant to the selection process. The Fuzzy AHP method enables precise determination of criterion weights based on expert opinions, aggregated using the EWAA operator, while Fuzzy CoCoSo provides a comprehensive analysis of alternatives to identify the optimal location. The results show that the combination of these methods offers a reliable framework for decision-making under complex conditions. Sensitivity analysis confirms the stability of the results, and comparative analysis supports the validity of the Fuzzy CoCoSo method. The model proves to be efficient and reliable for selecting locations for tank crossings over frozen water surfaces, providing a foundation for future research and practical application.

Downloads

Download data is not yet available.

References

Tešić, D., Božanić, D., & Milić, A. (2018). Application of the fuzzy AHP-TOPSIS model using Ma-Zheng scale: selection of the location for crossing the tanks over a frozen water obstacle. In Proceedings from the 2nd International Conference on Management, Engineering and Environment - ICMNEE, Obrenovac, Serbia, October 11-12, 2018 (pp. 396-406).

Choudhary, V., & Mishra, A. (2021). Analyzing the Critical Success Enablers of Industry 4.0 Using Hybrid Fuzzy AHP–CoCoSo Method. Journal of Industrial Integration and Management, 2150018. https://doi.org/10.1142/s2424862221500184

Bayhun, S., & Demirel, N. Ç. (2024). Hazard Identification and Risk Assessment for Sustainable Shipyard Floating Dock Operations: An Integrated Spherical Fuzzy Analytical Hierarchy Process and Fuzzy CoCoSo Approach. Sustainability, 16(13), 5790. https://doi.org/10.3390/su16135790

Adar, E., Delice, E. K., & Adar, T. (2022). Prioritizing of industrial wastewater management processes using an integrated AHP–CoCoSo model: comparative and sensitivity analyses. International Journal of Environmental Science and Technology, 19(6), 4691-4712. https://doi.org/10.1007/s13762-021-03511-y

Panpatil, S. S., Prajapati, H., & Kant, R. (2023). Analysing a GSCM enabler–based model for implementation of its practices: a Pythagorean fuzzy AHP and CoCoSo Approach. Process Integration and Optimization for Sustainability, 7(3), 523-543. https://doi.org/10.1007/s41660-022-00289-5

Nguyen, T. M. H., Nguyen, V. P., & Nguyen, D. T. (2024). A new hybrid Pythagorean fuzzy AHP and COCOSO MCDM based approach by adopting artificial intelligence technologies. Journal of Experimental & Theoretical Artificial Intelligence, 36(7), 1279-1305. https://doi.org/10.1080/0952813X.2022.2143908

Yazdani, M., Ye, C., Shaayesteh, M. T., & Zaraté, P. (2025). Decision support system for waste management: fuzzy group AHP-CoCoSo. International Journal of Production Management and Engineering, 13(1), 77-92. https://doi.org/10.4995/ijpme.2025.21558

Pifat, V. (1980). River crossing [Only in Serbian: Prelaz preko reka]. Military Publishing House.

Tešić, D. Z., Božanić, D. I., & Puška, A. (2024). Application of multi-criteria decision making for the selection of a location for crossing a water obstacle by fording in a defense operation. Military Technical Courier/Vojnotehnicki Glasnik, 72(3), 1120-1146. https://doi.org/10.5937/vojtehg72-51249

Pamučar D., Božanić D., Đorović B, & Milić A. (2011). Modelling of the fuzzy logical system for offering support in making decisions within the engineering units of the Serbian army. International Journal of the Physical Sciences, 6(3), 592-609. https://doi.org/10.5897/IJPS11.012

Božanić, D. I., & Pamučar, D. S. (2010). Evaluating locations for river crossing using fuzzy logic. Vojnotehnički glasnik/Military Technical Courier, 58(1), 129-145. https://doi.org/10.5937/vojtehg1001129B

Tešić, D. Z., Božanić, D. I., Pamučar, D. S., & Din, J. (2022). DIBR–FUZZY MARCOS model for selecting a location for a heavy mechanized bridge. Military Technical Courier/Vojnotehnicki Glasnik, 70(2). https://doi.org/10.5937/vojtehg70-35944

Šećković, V. (1976). Overcoming water obstacles with local and handy means and materials [Only in Serbian: Savladjivanje vodenih prepreka mesnim i priručnim sredstvima i materijalima]. Military Publishing House.

M-84 tank, description, handling, basic and technical maintenance, Book 1 [Only in Serbian: Tenk M-84, opis, rukovanje, osnovno i tehničko održavanje, Knjiga 1] (1988). Federal Secretariat for National Defense.

Saaty, T. L. (1980). The analytic hierarchy process: planning, priority setting, resource allocation. Mcgraw-Hill International Book Co.

Radovanović, M., Petrovski, A., Behlić, A., Perišić, M., Samopjan, M., & Lakanović, B. (2023). Application model of MCDM for selection of automatic rifle. Journal of Decision Analytics and Intelligent Computing, 3(1), 185–196. https://doi.org/10.31181/jdaic10011102023r

Ahmed, A.-B., Badi, I., & Bouraima, M. B. (2024). Combined Location Set Covering Model and Multi-Criteria Decision Analysis for Emergency Medical Service Assessment. Spectrum of Engineering and Management Sciences, 2(1), 110-121. https://doi.org/10.31181//sems2120249a

Maksimović, G. (2024). Application of analytical hierarchy process for emergency managers selection. Journal of Decision Analytics and Intelligent Computing, 4(1), 253–262. https://doi.org/10.31181/jdaic10022122024m

Pamučar D., Božanić D., & Đorović B. (2011). Fuzzy logic in decision making process in the Armed Forces of Serbia. LAMBERT Academic Publishing.

Zadeh, L. (1965). System Theory (J. Fox, Ed.). Polytechnic Press.

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353. https://doi.org/10.1016/s0019-9958(65)90241-x

Biswas, A., Gazi, K. H., Sankar, P. M., & Ghosh, A. (2025). A Decision-Making Framework for Sustainable Highway Restaurant Site Selection: AHP-TOPSIS Approach based on the Fuzzy Numbers. Spectrum of Operational Research, 2(1), 1-26. https://doi.org/10.31181/sor2120256

Radovanović, M., Jovčić, S., Petrovski, A., & Cirkin, E. (2025). Evaluation of University Professors Using the Spherical Fuzzy AHP and Grey MARCOS Multi-Criteria Decision-Making Model: A Case Study. Spectrum of Decision Making and Applications, 2(1), 198-218. https://doi.org/10.31181/sdmap21202518

Luhaniwal, J., Agarwal, S., & Mathur, T. (2025). An integrated DEA-fuzzy AHP method for prioritization of renewable energy sources in India. Scientific Reports, 15(1), 838. https://doi.org/10.1038/s41598-024-84891-2

Jewpanya, P., Nuangpirom, P., Nakkiew, W., Pitjamit, S., & Jaichomphu, P. (2025). Optimizing Tourist Destination Selection Using AHP and Fuzzy AHP Based on Individual Preferences for Personalized Tourism. Sustainability, 17(3), 1116. https://doi.org/10.3390/su17031116

Van Laarhoven, P. J. M., & Pedrycz, W. (1983). A fuzzy extension of Saaty’s priority theory. Fuzzy Sets and Systems, 11(1-3), 229–241. https://doi.org/10.1016/s0165-0114(83)80082-7

Liu, Y., Eckert, C. M., & Earl, C. (2020). A review of fuzzy AHP methods for decision-making with subjective judgements. Expert Systems with Applications, 113738. https://doi.org/10.1016/j.eswa.2020.113738

Božanić, D., Karović, S., & Pamucar, D. (2015). Fuzzification of the Saaty scale using a triangular fuzzy number with a variable confidence interval [Only in Serbian: Fazifikacija Saaty-jeve skale primenom trouglastog fuzzy broja sa promenljivim intervalom poverenja]. In Proceedings from the SYM-OP-IS scientific-professional meeting, Silver Lake, Serbia, September 5th to 18th, 2015 (pp. 420-424).

Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of mathematical psychology, 15(3), 234-281. https://doi.org/10.1016/0022-2496(77)90033-5

Harker, P. T., & Vargas, L. G. (1987). The theory of ratio scale estimation: Saaty's analytic hierarchy process. Management science, 33(11), 1383-1403. https://doi.org/10.1287/mnsc.33.11.1383

Lootsma, F. A. (1989). Conflict resolution via pairwise comparison of concessions. European Journal of Operational Research, 40(1), 109-116. https://doi.org/10.1016/0377-2217(89)90278-6

Ma, D., & Zheng, X. (1991). 9/9 - 9/1 Scale Method of AHP. ISAHP Proceedings. https://doi.org/10.13033/isahp.y1991.001

Ishizaka, A., Balkenborg, D., & Kaplan, T. (2011). Influence of aggregation and measurement scale on ranking a compromise alternative in AHP. Journal of the Operational Research Society, 62(4), 700-710. https://doi.org/10.1057/jors.2010.23

Yazdani, M., Zarate, P., Kazimieras Zavadskas, E., & Turskis, Z. (2019). A combined compromise solution (CoCoSo) method for multi-criteria decision-making problems. Management Decision, 57(9), 2501-2519. https://doi.org/10.1108/MD-05-2017-0458

Torkayesh, A. E., Pamucar, D., Ecer, F., & Chatterjee, P. (2021). An integrated BWM-LBWA-CoCoSo framework for evaluation of healthcare sectors in Eastern Europe. Socio-Economic Planning Sciences, 78, 101052. https://dx.doi.org/10.1016/j.seps.2021.101052

Negara, R. M., Syambas, N. R., & Mulyana, E. (2023). C3CPS: CRITIC-CoCoSo-based caching placement strategy using multi-criteria decision method for efficient content distribution in Named Data Networking. Journal of King Saud University-Computer and Information Sciences, 35(9), 101714. https://doi.org/10.1016/j.jksuci.2023.101714

Kolour, H. R., Momayezi, V., & Momayezi, F. (2025). Enhancing Supplier Selection in Public Manufacturing: A Hybrid Multi-Criteria Decision-Making Approach. Spectrum of Decision Making and Applications, 3(1), 1-20. https://doi.org/10.31181/sdmap31202629

Ecer, F., & Pamucar, D. (2020). Sustainable supplier selection: A novel integrated fuzzy best worst method (F-BWM) and fuzzy CoCoSo with Bonferroni (CoCoSo’B) multi-criteria model. Journal of cleaner production, 266, 121981. https://doi.org/10.1016/j.jclepro.2020.121981

Ulutaş, A., Popovic, G., Radanov, P., Stanujkic, D., & Karabasevic, D. (2021). A new hybrid fuzzy PSI-PIPRECIA-CoCoSo MCDM based approach to solving the transportation company selection problem. Technological and Economic Development of Economy, 27(5), 1227-1249. https://doi.org/10.3846/tede.2021.15058

Demir, G., Damjanović, M., Matović, B., & Vujadinović, R. (2022). Toward Sustainable Urban Mobility by Using Fuzzy-FUCOM and Fuzzy-CoCoSo Methods: The Case of the SUMP Podgorica. Sustainability, 14(9), 4972. https://doi.org/10.3390/su14094972

Deveci, M., Pamucar, D., Gokasar, I., Köppen, M., Gupta, B. B., & Daim, T. (2023). Evaluation of Metaverse traffic safety implementations using fuzzy Einstein based logarithmic methodology of additive weights and TOPSIS method. Technological Forecasting and Social Change, 194, 122681. https://doi.org/10.1016/j.techfore.2023.122681

Tešić, D., & Bozanic, D. (2023). Optimizing military decision-making: Application of the FUCOM–EWAA–COPRAS-G MCDM model. Acadlore Transactions on Applied Mathematics and Statistics, 1(3), 148-160. https://doi.org/10.56578/atams010303

Demir, G., Chatterjee, P., & Pamucar, D. (2024). Sensitivity analysis in multi-criteria decision making: A state-of-the-art research perspective using bibliometric analysis. Expert Systems with Applications, 237, 121660. https://doi.org/10.1016/j.eswa.2023.121660

Katrancı, A., Kundakcı, N., & Arman, K. (2025). Fuzzy SIWEC and Fuzzy RAWEC Methods for Sustainable Waste Disposal Technology Selection. Spectrum of Operational Research, 3(1), 87-102. https://doi.org/10.31181/sor31202633

Więckowski, J., & Sałabun, W. (2025). Comparative Sensitivity Analysis in Composite Material Selection: Evaluating OAT and COMSAM Methods in Multi-criteria Decision-making. Spectrum of Mechanical Engineering and Operational Research, 2(1), 1-12. https://doi.org/10.31181/smeor21202524

Tešić, D., Božanić, D., Stojković, D., Puška, A., & Stojanović, I. (2023). DIBR–DOMBI–FUZZY MAIRCA model for strategy selection in the system of defense. Discrete Dynamics in Nature and Society, 2023(1), 4961972. https://doi.org/10.1155/2023/4961972

Kamarul Zaman, M. M., Rodzi, Z. M., Andu, Y., Shafie, N. A., Sanusi, Z. M., Ghazali, A. W., & Mahyideen, J. M. (2025). Adaptive Utility Ranking Algorithm for Evaluating Blockchain-Enabled Microfinance in Emerging - A New MCDM Perspective. International Journal of Economic Sciences, 14(1), 123-146. https://doi.org/10.31181/ijes1412025182

Sarfraz, M., & Gul, R. (2025). Evaluating Medical College Projects with Hamacher Aggregation Operators under the Interval-valued Complex T-Spherical Fuzzy Environment. Management Science Advances, 2(1), 69-90. https://doi.org/10.31181/msa21202511

Razak, S. A., Rodzi, Z. M., Al-Sharqi, F., & Ramli, N. (2025). Revolutionizing Decision-Making in E-Commerce and IT Procurement: An IVPNS-COBRA Linguistic Variable Framework for Enhanced Multi-Criteria Analysis. International Journal of Economic Sciences, 14(1), 1-31. https://doi.org/10.31181/ijes1412025176

Yazdani, M., Alidoosti, A., & Zavadskas, E. K. (2011). Risk Analysis of Critical Infrastructures Using Fuzzy Copras. Economic Research-Ekonomska Istraživanja, 24(4), 27–40. https://doi.org/10.1080/1331677X.2011.11517478

Bobar, Z., Božanić, D., Djurić, K., & Pamučar, D. (2020). Ranking and assessment of the efficiency of social media using the fuzzy AHP-Z number model-fuzzy MABAC. Acta Polytechnica Hungarica, 17(3), 43-70. https://doi.org/10.12700/APH.17.3.2020.3.3

Turskis, Z., Zavadskas, E. K., Antucheviciene, J., & Kosareva, N. (2015). A Hybrid Model Based on Fuzzy AHP and Fuzzy WASPAS for Construction Site Selection. International Journal of Computers Communications & Control, 10(6), 113. https://doi.org/10.15837/ijccc.2015.6.2078

Roszkowska, E., & Kacprzak, D. (2016). The fuzzy saw and fuzzy TOPSIS procedures based on ordered fuzzy numbers. Information Sciences, 369, 564-584. https://doi.org/10.1016/j.ins.2016.07.044

Published

2025-07-19

How to Cite

Tešić, D., Božanić, D., Milić, A., & Puška, A. (2025). Selection of Ice Crossing Point location using hybrid MCDM model Fuzzy AHP-EWAA-Fuzzy CoCoSo. Spectrum of Mechanical Engineering and Operational Research, 2(1), 280-295. https://doi.org/10.31181/smeor21202545