Finding Humanitarian Supply Chain Management Challenges using Uncertain MCDM Methodology
DOI:
https://doi.org/10.31181/smeor21202548Keywords:
Humanitarian Supply Chain Management (HSCM), Challenges of Supply Chain, Triangular Fuzzy Set (TFS), CRITICAbstract
Challenges have emerged for Humanitarian Supply Chain Management (HSCM), a valid and prominent subject today. It primarily focuses on stakeholders, including governments, various non-governmental organisations (NGOs), donors, suppliers, and affected communities. Addressing these challenges enhances disaster response efficiency, resource allocation, and aid delivery. In this work, we have selected several criteria, namely funding, coordination, infrastructure, transparency, logistics, and sustainability. Triangular fuzzy numbers (TFNs) are used as a mathematical tool to handle uncertainty. Data sets are collected from two decision-makers who provide their decisions in linguistic terms, which are then converted into crisp numbers. The weight of the criteria is evaluated using a popular multi-criteria decision-making (MCDM) methodology, specifically the Criteria Importance Through Inter-criteria Correlation (CRITIC) method.
Downloads
References
Kunz, N., & Gold, S. (2017). Sustainable humanitarian supply chain management – exploring new theory. International Journal of Logistics Research and Applications, 20(2). https://doi.org/10.1080/13675567.2015.1103845
Burkart, C., Besiou, M., & Wakolbinger, T. (2016a). The funding—humanitarian supply chain interface. Surveys in Operations Research and Management Science, 21(2), 31–45. https://doi.org/10.1016/j.sorms.2016.10.003
YU, D., YALCIN, M. G., OZPOLAT, K., & HALES, D. N. (2015). Research in humanitarian supply chain management and a new framework. Eurasian Journal of Business and Economics, 8(15), 39–60. https://doi.org/10.17015/ejbe.2015.015.03
Anjomshoae, A., Banomyong, R., Azadnia, A. H., Kunz, N., & Blome, C. (2023). Sustainable humanitarian supply chains: A systematic literature review and research propositions. Production Planning & Control, 36(3), 357–377. https://doi.org/10.1080/09537287.2023.2273451
John, L., Anbanandam, R., & Sridharan, R. (2012). Humanitarian supply chain management: A critical review. International Journal of Services and Operations Management, 13(4), 498–524. https://doi.org/10.1504/IJSOM.2012.050143
Paciarotti, C., Piotrowicz, W. D., & Fenton, G. (2021). Humanitarian logistics and supply chain standards. Literature review and view from practice. Journal of Humanitarian Logistics and Supply Chain Management, 11(3).
Seifert, L., Kunz, N., & Gold, S. (2018). Humanitarian supply chain management responding to refugees: A literature review. Journal of Humanitarian Logistics and Supply Chain Management, 8(3), 398–426. https://doi.org/10.1108/JHLSCM-07-2017-0029
Gupta, S., Altay, N., & Luo, Z. (2019). Big data in humanitarian supply chain management: A review and further research directions. Annals of Operations Research, 283, 1153–1173. https://doi.org/10.1007/s10479-017-2671-4
Wassenhove, L. N. V. (2006). Humanitarian aid logistics: Supply chain management in high gear. Journal of the Operational Research Society, 57(5), 475–489. https://doi.org/10.1057/palgrave.jors.2602125
John, L., & Ramesh, A. (2012). Humanitarian supply chain management in india: A sap-lap framework. Journal of Advances in Management Research, 9(2), 217–235. https://doi.org/10.1108/09727981211271968
Shakibaei, H., Farhadi-Ramin, M. R., Alipour-Vaezi, M., Aghsami, A., & Rabbani, M. (2024). Designing a post-disaster humanitarian supply chain using machine learning and multi-criteria decision-making techniques. Kybernetes, 53(5), 1682–1709. https://doi.org/10.1108/K-10-2022-1404
Wang, W., Chen, Y., Wang, Y., Deveci, M., Cheng, S., & Brito-Parada, P. R. (2024). A decision support framework for humanitarian supply chain management – analysing enablers of ai-hi integration using a complex spherical fuzzy dematel-marcos method. Technological Forecasting and Social Change, 206(123556). https://doi.org/10.1016/j.techfore.2024.123556
Nain, A., Jain, D., & Trivedi, A. (2024). Multi-criteria decision-making methods: Application in humanitarian operations. Benchmarking: An International Journal, 31(6), 2090–2128. https://doi.org/10.1108/BIJ-11-2022-0673
Eligüzel, I. M., & Özceylan, E. (2023). Classification of fuzzy mcdm literature applied to humanitarian logistics problems. Intelligent and Fuzzy Systems, 759. https://doi.org/10.1007/978-3-031-39777-6_42
Patil, A., Madaan, J., Chan, F. T., & Charan, P. (2022). Advancement of performance measurement system in the humanitarian supply chain. Expert Systems with Applications, 206(117844). https://doi.org/10.1016/j.eswa.2022.117844
Mittal, R., & Obaid, A. (2023). Sustainable warehouse location selection in humanitarian supply chain: Multi-criteria decision-making approach. International Journal of Mathematical, Engineering Management Sciences, 8(2), 316. https://doi.org/10.33889/IJMEMS.2023.8.2.019
Kabra, G., Ramesh, A., Jain, V., & Akhtar, P. (2023). Barriers to information and digital technology adoption in humanitarian supply chain management: A fuzzy ahp approach. Journal of Enterprise Information Management, 36(2), 505–527. https://doi.org/10.1108/JEIM-10-2021-0456
Ahmad, M. S., Fei, W., Shoaib, M., & Ali, H. (2024). Identification of key drivers for performance measurement in sustainable humanitarian relief logistics: An integrated fuzzy delphi-dematel approach. Sustainability, 16(11), 4412. https://doi.org/10.3390/su16114412
Büyüközkan, G., & Göçer, F. (2024). A collaborative decision-making framework in humanitarian logistics. Intelligent and Fuzzy Systems, 1088, 99–107. https://doi.org/10.1007/978-3-031-70018-7_12
Agarwal, S., Kant, R., & Shankar, R. (2022). Exploring sustainability balanced scorecard for performance evaluation of humanitarian organizations. Cleaner Logistics and Supply Chain, 3(100026). https://doi.org/10.1016/j.clscn.2021.100026
Kabra, G. (2024). Critical success factors to knowledge management in humanitarian supply chain. Journal of the Knowledge Economy, 1–34. https://doi.org/10.1007/s13132-024-02314-z
Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X
Dubois, D., & Prade, H. (1980). Fuzzy sets and systems: Theory and applications. Academic Press.
Zimmermann, H.-J. (1991). Fuzzy set theory — and its applications. Springer Science & Business Media.
Klir, G. J., & Yuan, B. (1995). Fuzzy sets and fuzzy logic. Prentice Hall.
Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning—i. Information Sciences, 8(3), 199–249. https://doi.org/10.1016/0020-0255(75)90036-5
Palanikumar, M., Arulmozhi, K., Iampan, A., & Rangarajan, K. (2022). Multiple attribute decision-making based on sine trigonometric fermatean normal fuzzy aggregation operator. International Journal of Innovative Computing, Information and Control, 18(5), 1431–1444. https://doi.org/10.24507/ijicic.18.05.1431
Rangarajan, K., Singh, P., Salahshour, S., & Mondal, S. P. (2025). Analysis of second-order linear fuzzy differential equation under an innovative fuzzy derivative approach and its application. Journal of Uncertain Systems, 18(1), 2450022. https://doi.org/10.1142/S1752890924500223
Gani, A. N., & Assarudeen, S. N. M. (2012). A new operation on triangular fuzzy number for solving fuzzy linear programming problem. Applied Mathematical Sciences, 6(11), 525–532.
Wang, J., Ding, D., Liu, O., & Li, M. (2016). A synthetic method for knowledge management performance evaluation based on triangular fuzzy number and group support systems. Applied Soft Computing, 39, 11–20. https://doi.org/10.1016/j.asoc.2015.09.041
Arora, H. D., & Naithani, A. (2023). Some distance measures for triangular fuzzy numbers under technique for order of preference by similarity to ideal solution environment. Opsearch, 60, 701–719. https://doi.org/10.1007/s12597-023-00627-2
Shanthini, C. (2020). A new operation on triangular fuzzy number. Malaya Journal of Matematik, S(2), 4082–4085.
Dhurai, K., & Karpagam. (n.d.). A new pivotal operation on triangular fuzzy number for solving fully fuzzy linear programming problems. International Journal of Applied Mathematical Sciences, 9(1), 41–46.
Mukherjee, A. K., Gazi, K. H., Salahshour, S., Ghosh, A., & Mondal, S. P. (2023). A brief analysis and interpretation on arithmetic operations of fuzzy numbers. Results in Control and Optimization, 13(3), 100312. https://doi.org/10.1016/j.rico.2023.100312
Wang, F. (2021). Preference degree of triangular fuzzy numbers and its application to multi-attribute group decision making. Expert Systems With Applications, 178. https://doi.org/10.1016/j.eswa.2021.114982
Suvetha, R., Rangarajan, K., Dey, B. K., Alrasheedi, A. F., Ivkovic, N., & Jana, C. (2025). A sustainable production inventory model for power-pattern demand with carbon emissions and shelf life considerations. International Journal of Computational Intelligence Systems, 18(129). https://doi.org/10.1007/s44196-025-00861-0
Limi, A., & Rangarajan, K. (2025). Inventory model for non-instantaneous decay items with price-driven demand: Integrating inflation, sustainability investments, shortages, and hybrid payments. Operations Research Forum, 6(67). https://doi.org/10.1007/s43069-025-00478-1
Suvetha, R., Rangarajan, K., Rajadurai, P., Kaviyarasu, M., & Alqahtani, M. (2025a). Integrated sustainable inventory and remanufacturing optimization in a circular economy: A two-echelon supply chain approach under carbon regulations. European Journal of Pure and Applied Mathematics, 18(2), 6032. https://doi.org/10.29020/nybg.ejpam.v18i2.6032
Suvetha, R., Rangarajan, K., Rajadurai, P., Kaviyarasu, M., & Alqahtani, M. (2025b). Optimized three-stage epq model incorporating time-dependent deterioration and trapezoidal demand dynamics. International Journal of Analysis and Applications, 23(39). https://doi.org/10.28924/2291-8639-23-2025-39
Mandal, S., Gazi, K. H., Salahshour, S., Mondal, S. P., Bhattacharya, P., & Saha, A. K. (2024). Application of interval valued intuitionistic fuzzy uncertain mcdm methodology for ph. d supervisor selection problem. Results in Control and Optimization, 15(100411). https://doi.org/10.1016/j.rico.2024.100411
Rahim, R., Siahaan, A. P. U., Wijaya, R. F., & et al. (2018). Technique for order of preference by similarity to ideal solution (topsis) method for decision support system in top management. International Journal of Engineering & Technology, 7(3.4), 290–293.
Diakoulaki, D., Mavrota, G., & Papayannakis, L. (1995a). Determining objective weights in multiple criteria problems: The critic method. Computers & Operations Research, 22(7), 763–770. https://doi.org/10.1016/0305-0548(94)00059-H
Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27(3), 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
Akram, M., Luqman, A., & Kahraman, C. (2021). Hesitant pythagorean fuzzy electre-ii method for multi-criteria decision-making problems. Applied Soft Computing, 108(107479). https://doi.org/10.1016/j.asoc.2021.107479
Zavadskas, E. K., Kaklauskas, A., & Sarka, V. (1994). The new method of multicriteria complex proportional assessment of projects. Technological and Economic Development of Economy, 1, 131–139.
Zavadskas, E. K., Turskis, Z., Antucheviciene, J., & Zakarevicius, A. (2012). Optimization of weighted aggregated sum product assessment. Elektronika Ir Elektrotechnika, 122(6), 3–6. https://doi.org/10.5755/j01.eee.122.6.1810
Pamucar, D., & Görcün, Ö. F. (2022). Evaluation of the european container ports using a new hybrid fuzzy lbwa-cocoso’b techniques. Expert Systems with Applications, 203(117463). https://doi.org/10.1016/j.eswa.2022.117463
Momena, A. F., Gazi, K. H., & Mondal, S. P. (2025). Multi-criteria decision analysis for sustainable medicinal supply chain problems with adaptability and challenges issues. Logistics, 9(1), 1–32. https://doi.org/10.3390/logistics9010031
Adhikari, D., Gazi, K. H., Sobczak, A., Giri, B. C., Salahshour, S., & Mondal, S. P. (2024). Ranking of different states in india based on sustainable women empowerment using mcdm methodology under uncertain environment. Journal of Uncertain Systems. https://doi.org/10.1142/S1752890924500107
Ho, W.-R. J., Tsai, C.-L., Tzeng, G.-H., & Fang, S.-K. (2011). Combined dematel technique with a novel mcdm model for exploring portfolio selection based on capm. Expert Systems with Applications, 38(1), 16–25. https://doi.org/10.1016/j.eswa.2010.05.058
Ghorui, N., Ghosh, A., Algehyne, E. A., Mondal, S. P., & Saha, A. K. (2020). Ahp-topsis inspired shopping mall site selection problem with fuzzy data. Mathematics, 8(8). https://doi.org/10.3390/math8081380
Gazi, K. H., Momena, A. F., Salahshour, S., Mondal, S. P., & Ghosh, A. (2024). Synergistic strategy of sustainable hospital site selection in saudi arabia using spherical fuzzy mcdm methodology. Journal of Uncertain Systems, 17(3), 1–64. https://doi.org/10.1142/S1752890924500041
Biswas, A., Gazi, K. H., Bhaduri, P., & Mondal, S. P. (2025). Site selection for girls hostel in a university campus by mcdm based strategy. Spectrum of Decision Making and Applications, 2(1), 68–93. https://doi.org/10.31181/sdmap21202511
Haque, T. S., Chakraborty, A., Mondal, S. P., & Alam, S. (2022). New exponential operational law for measuring pollution attributes in mega-cities based on mcgdm problem with trapezoidal neutrosophic data. Journal of Ambient Intelligence and Humanized Computing, 13, 5591–5608. https://doi.org/10.1007/s12652-021-03223-8
Ghorui, N., Ghosh, A., Mondal, S. P., Bajuri, M. Y., Ahmadian, A., Salahshour, S., & Ferrara, M. (2021). Identification of dominant risk factor involved in spread of covid-19 using hesitant fuzzy mcdm methodology. Results in Physics, 21(103811). https://doi.org/10.1016/j.rinp.2020.103811
Diakoulaki, D., Mavrota, G., & Papayannakis, L. (1995b). Determining objective weights in multiple criteria problems: The critic method. Computers & Operations Research, 22(7), 763–770. https://doi.org/10.1016/0305-0548(94)00059-H
Saraji, M. K., Streimikiene, D., & Kyriakopoulos, G. L. (2021). Fermatean fuzzy critic-copras method for evaluating the challenges to industry 4.0 adoption for a sustainable digital transformation. Sustainability, 13(17). https://doi.org/10.3390/su13179577
Ahmadsaraei, M. S., Koshksaray, A. A., Soleimani, M., & Kazem, Z. (2022). Sustainable supply chain risk in food packaging industry: Integrated delphi-critic-copras method using fuzzy set theory. International Journal of Business Studies and Innovation, 2(1), 61–78.
Saraji, M. K., Streimikiene, D., & Lauzadyte-tutliene, A. (2021). A novel pythagorean fuzzy-swara-critic-copras method for evaluating the barriers to developing business model innovation for sustainability. Handbook of Research on Novel Practices and Current Successes in Achieving the Sustainable Development Goals, 1–31. https://doi.org/10.4018/978-1-7998-8426-2.ch001
Akram, M., Zahid, S., & Deveci, M. (2024). Enhanced critic-regime method for decision making based on pythagorean fuzzy rough number. Expert Systems with Applications, 238. https://doi.org/10.1016/j.eswa.2023.122014
Krishnan, A. R., Kasim, M. M., Hamid, R., & Ghazali, M. F. (2021). A modified critic method to estimate the objective weights of decision criteria. Symmetry, 13(6), 973. https://doi.org/10.3390/sym13060973
Zhang, Q., Fan, J., & Gao, C. (2024). Critid: Enhancing critic with advanced independence testing for robust multi-criteria decision-making. Scientific Reports, 14(25094). https://doi.org/10.1038/s41598-024-75992-z
Zhong, S., Chen, Y., & Miao, Y. (2023). Using improved critic method to evaluate thermal coal suppliers. Scientific Reports, 13(195). https://doi.org/10.1038/s41598-023-27495-6
Wang, S., Wei, G., Lu, J., Wu, J., Wei, C., & Chen, X. (2022). Grp and critic method for probabilistic uncertain linguistic magdm and its application to site selection of hospital constructions. Soft Computing, 26, 237–251. https://doi.org/10.1007/s00500-021-06429-2
Zhang, H., & Wei, G. (2023). Location selection of electric vehicles charging stations by using the spherical fuzzy cpt–cocoso and d-critic method. Computational and Applied Mathematics, 42(60). https://doi.org/10.1007/s40314-022-02183-9
Yang, X., Ali, N. A., & Tat, H. H. (2025). Study on tourism development using critic method for tourist satisfaction. IEEE Access. https://doi.org/10.1109/ACCESS.2025.3552279
Nguyen, T. K. L., Le, H. N., Ngo, V. H., & Hoang, B. A. (2020). Critic method and grey system theory in the study of global electric cars. World Electric Vehicle Journal, 11(4). https://doi.org/10.3390/wevj11040079
Shi, H., Li, Y., Jiang, Z., & Yan, J. (2020). Comprehensive evaluation of power quality for micro-grid based on critic method, 1667–1669. https://doi.org/10.1109/IPEMC-ECCEAsia48364.2020.9368175
Jezewski, M., Czabanski, R., & Leski, J. (2017). Introduction to fuzzy sets. Studies in Fuzziness and Soft Computing, 356. https://doi.org/10.1007/978-3-319-59614-3_1
Dubois, D., & Prade, H. (1978). Operations on fuzzy numbers. International Journal of Systems Science, 9(6), 613–626. https://doi.org/10.1080/00207727808941724
Kabra, G., Ramesh, A., & Arshinder, K. (2015). Identification and prioritization of coordination barriers in humanitarian supply chain management. International Journal of Disaster Risk Reduction, 13, 128–138. https://doi.org/10.1016/j.ijdrr.2015.01.011
Momena, A. F., Gazi, K. H., Rahaman, M., Sobczak, A., Salahshour, S., Mondal, S. P., & Ghosh, A. (2024). Ranking and challenges of supply chain companies using mcdm methodology. Logistics, 8(3), 87. https://doi.org/10.3390/logistics8030087
Gardner, T., Benzie, M., Börner, J., Dawkins, E., Fick, S., Garrett, R., Godar, J., Grimard, A., Lake, S., Larsen, R., Mardas, N., McDermott, C., Meyfroidt, P., Osbeck, M., Persson, M., Sembres, T., Suavet, C., Strassburg, B., Trevisan, A., . . . Wolvekamp, P. (2019). Transparency and sustainability in global commodity supply chains. World Development, 121, 163–177. https://doi.org/10.1016/j.worlddev.2018.05.025
Burkart, C., Besiou, M., & Wakolbinger, T. (2016b). The funding—humanitarian supply chain interface. Surveys in Operations Research and Management Science, 21(2), 31–45. https://doi.org/10.1016/j.sorms.2016.10.003
Idani, P. G. (2022). Degree of technology, adequacy of infrastructure, and stimulus rainy-day-fund as determinants of a firm’s performance during a pandemic. FIU Electronic Theses and Dissertations, 5088.
Romano, P. (2003). Co-ordination and integration mechanisms to manage logistics processes across supply networks. Journal of Purchasing and Supply Management, 9(3), 119–134. https://doi.org/10.1016/S1478-4092(03)00008-6
Li, C., Zhang, F., Cao, C., Liu, Y., & Qu, T. (2019). Organizational coordination in sustainable humanitarian supply chain: An evolutionary game approach. Journal of Cleaner Production, 219, 291–303. https://doi.org/10.1016/j.jclepro.2019.01.233
Rahmanov, F., Neymatova, L., Aliyeva, R., & Hashimova, A. (2022). Management of the transport infrastructure of global logistics: Cross-country analysis. Marketing and Management of Innovations, 4, 65–75. https://doi.org/10.21272/mmi.2022.4-07
Trienekens, J., Wognum, P., Beulens, A., & van der Vorst, J. (2012). Transparency in complex dynamic food supply chains. Advanced Engineering Informatics, 26(1), 55–65. https://doi.org/10.1016/j.aei.2011.07.007
Gupta, S., & Palsule-Desai, O. D. (2011). Sustainable supply chain management: Review and research opportunities. IIMB Management Review, 23(4), 234–245. https://doi.org/10.1016/j.iimb.2011.09.002
Kovács, G., & Spens, K. M. (2007). Humanitarian logistics in disaster relief operations. International Journal of Physical Distribution & Logistics Management, 37(2), 99–114. https://doi.org/10.1108/09600030710734820
Venkatesh, V. G., Zhang, A., Deakins, E., Luthra, S., & Mangla, S. (2019). A fuzzy ahp-topsis approach to supply partner selection in continuous aid humanitarian supply chains. Annals of Operations Research, 283, 1517–1550. https://doi.org/10.1007/s10479-018-2981-1
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Kamal Hossain Gazi, Aditi Biswas, Tripti Basuri, Arijit Ghosh, Sankar Prasad Mondal (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.